MHB A proof of a general property of norms

gucci1
Messages
12
Reaction score
0
So I have been asked to prove a result that is supposedly valid for any norm on any vector space. The statement to prove is: | ||x|| - ||y|| | <= ||x - y||

The problem is, I have no idea where to start with this proof. Maybe I'm missing some fundamental property of norms, but it seems that having to prove this for any norm on any vector space rules out any definitions that I might try to apply :-/

Sorry for not having anything to go on here, but I'm lost. Thank you all very much for any help you might be able to offer!
 
Physics news on Phys.org
This follows from the triangle inequality. Consider the quantity $\| x-y+y \|$.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top