A A question about current density in finite element analysis

AI Thread Summary
When dealing with multiple current sources in finite element analysis, it is essential to determine how to apply Maxwell's equations correctly. The discussion highlights the need to calculate the current densities from all independent sources and consider their superposition when analyzing magnetic potential, especially in ferromagnetic materials. It emphasizes that the response of ferromagnetic materials can significantly exceed the original source from free currents, complicating the analysis. Simplifying assumptions may be necessary depending on the geometry, particularly in transformer applications. Overall, this problem is complex and requires careful consideration of multiple factors in the analysis.
JH_1870
Messages
3
Reaction score
1
I know that if there is only one conductor providing the current density, then the current density can be used.

elcore.PNG


But if you apply Maxwell's equation when there are multiple current sources, I don't know which value to use.

This is not an analysis using a tool, but a problem when I develop the code myself.

Should I calculate all the values for multiple independent sources and then add them up?

bio.PNG


Where J is the applied current density. Is it correct to use the applied current density when calculating the magnetic potential in the iron core?

And, when there are several applied current densities, is it necessary to apply the superposition principle to solve them?
 
Physics news on Phys.org
This appears to be a very non-trivial problem that you are trying to solve. For problems with ferromagnetic materials, sometimes the geometry involved leads to simplifying assumptions, particularly in the case of transformers. You might find some good reading in this thread, along with some of the "links" that are referenced: https://www.physicsforums.com/threads/magnetic-flux-is-the-same-if-we-apply-the-biot-savart.927681/
For the general case of magnetic materials with currents in conductors, I think it may be a very difficult problem that you are trying to tackle.
 
Just an additional comment or two: This type of problem can not be solved as a perturbation with a small response and source generated from the ferromagnetic material. Instead, in many cases, the response of the ferromagnetic material may be many and many times larger than the original source from the free currents in the conductor. Perhaps others may also comment, but this is my take on this problem.
 
This is from Griffiths' Electrodynamics, 3rd edition, page 352. I am trying to calculate the divergence of the Maxwell stress tensor. The tensor is given as ##T_{ij} =\epsilon_0 (E_iE_j-\frac 1 2 \delta_{ij} E^2)+\frac 1 {\mu_0}(B_iB_j-\frac 1 2 \delta_{ij} B^2)##. To make things easier, I just want to focus on the part with the electrical field, i.e. I want to find the divergence of ##E_{ij}=E_iE_j-\frac 1 2 \delta_{ij}E^2##. In matrix form, this tensor should look like this...
Thread 'Applying the Gauss (1835) formula for force between 2 parallel DC currents'
Please can anyone either:- (1) point me to a derivation of the perpendicular force (Fy) between two very long parallel wires carrying steady currents utilising the formula of Gauss for the force F along the line r between 2 charges? Or alternatively (2) point out where I have gone wrong in my method? I am having problems with calculating the direction and magnitude of the force as expected from modern (Biot-Savart-Maxwell-Lorentz) formula. Here is my method and results so far:- This...
Back
Top