About showing a function : not unbounded on B

  • Context: MHB 
  • Thread starter Thread starter bw0young0math
  • Start date Start date
  • Tags Tags
    Function
Click For Summary

Discussion Overview

The discussion revolves around the problem of demonstrating that a specific function \( k \) defined on the interval \( A = (0, \infty) \) is unbounded on any arbitrary open interval \( B \subset A \). Participants explore various approaches to proving this, including both proof by contradiction and direct proof methods.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants present a proof by contradiction, arguing that if \( k \) is bounded on \( B \), then a contradiction arises by finding a rational number in \( B \) that leads to \( k(c) > M \).
  • Others propose a direct proof approach, emphasizing the definition of unboundedness and suggesting the selection of a prime number \( n > N \) to demonstrate that \( k \) exceeds any given bound within \( B \).
  • A participant questions how to handle the case when \( B \) is infinite, expressing uncertainty about defining half the length of \( B \) in that scenario.
  • Another participant suggests that if \( B \) is infinite, one can consider a finite subinterval to establish unboundedness, thus extending the conclusion to the entire interval.
  • There is a discussion about the reasoning behind choosing \( n \) such that \( 1/n \) is less than half the length of the interval to ensure the presence of multiple rational points.

Areas of Agreement / Disagreement

Participants generally agree on the unboundedness of the function \( k \) on the interval \( B \), but there are differing opinions on the preferred method of proof and how to handle infinite intervals. The discussion remains unresolved regarding the best approach for infinite intervals.

Contextual Notes

There are limitations in the discussion regarding the handling of infinite intervals and the assumptions made about the density of rational numbers within specific subintervals. The proofs rely on the properties of rational numbers and their distribution, which may not be fully explored in all cases.

bw0young0math
Messages
27
Reaction score
0
Hello, I have a problem. I think this problem about 5 hours. But I couldn't finish this.
In fact, I solve a little. But I don't know whether it is right or not.
If you check this problem, I really appreciate you..

*This is the problem from Bartle 5.1 #14.

Let $A=(0,∞)$, $k:A→\Bbb R$ is given by $$k(x)=\begin{cases}0& (x∈A∩\Bbb Q^c)\\n &(x∈A∩\Bbb Q, x = \frac{m}{n}, (m,n)=1) \end{cases}$$
Let $B$ be an arbitrary open interval in A ($B⊂A$).
Show that function $k$ is unbounded on $B$.* My solution:
There exists $B=(a,b)⊂A=(0,∞)$ such that $k$ is bounded on $B$.
So,there exist $M>0$ such that $\forall x\in B$, $\lvert k(x)\rvert \leq M$
ⅰ)$a,b\in \Bbb R$
Let $C=(a,\min\{a+1,b\})$
Let $D=\{x\in C|x=m/n ,(m,n)=1, n\leq M\}$. Then $D$ is finite set.
Let $c_1$=the smallest number in D and $c_2$ is next number in $D$ ($c_1<c_2$)
Then by $\Bbb Q$-density, there exist a rational number $c$ in interval ($c_1, c_2$). Then, $c=q/p$, $(p,q)=1$, $p>M$.
So $k(c)=p>M$ and $c \in (c_1,c_2) \subset C = (a,\min\{a+1,b\})\subset B=(a,b)\subset A=(0,∞)$.
Thus this is contradiction to "$k$ is bounded on $B$."
Thus $k$ is not bounded on arbitrary open intervals included in $A$.

ⅱ)$a,b\in \Bbb R \cup \{∞\}$
Let $C=(a,a+1)$. Then Let's do something similar way to ⅰ).



Thus $k$ is not bounded on arbitrary open intervals included in $A$.

How about my inference? Please check above, and if you have good solution, let me know it... Thank you.
 
Last edited by a moderator:
Physics news on Phys.org
bw0young0math said:
Hello, I have a problem. I think this problem about 5 hours. But I couldn't finish this.
In fact, I solve a little. But I don't know whether it is right or not.
If you check this problem, I really appreciate you..

*This is the problem from Bartle 5.1 #14.

A=(0,∞) k:A→R(real numbers) ,k(x)=0 (x∈A∩Q^c) k(x)=n (x∈A∩Q,x=m/n (m,n)=1 )
Let B : arbitrary open interval in A (B⊂A)
Show that function k is unbounded on B.* My solution:
There exists B=(a,b)⊂A=(0,∞) such that k is bounded on B.
So,there exist M>0 such that ∀x∈B=(a,b), |k(x)|≤M
ⅰ)(a,b∈R)
Let C=(a,min{a+1,b})
Let D={x∈C|x=m/n,(m,n)=1, n≤M}. Then D is finite set.
Let c1=the smallest number in D and c2 is next number in D (c1<c2)
Then by Q-density, there exist a rational number c in interval (c1,c2). Then, c=q/p (p,q)=1, p>M.
So k(c)=p>M & c∈(c1,c2)⊂C=(a,min{a+1,b})⊂B=(a,b)⊂A=(0,∞).
Thus this is contradiction to "k is bounded on B."
Thus k is not bounded on arbitrary open intervals included in A.

ⅱ)(a,b∈R∪{∞})
Let C=(a,a+1). Then Let's do something similar way to ⅰ)(a,b∈R)



Thus k is not bounded on arbitrary open intervals included in A.

How about my inference? Please check above& If you have good solution, let me know it... Thank you.
Your proof is correct. (Yes)

As a matter of personal choice, I would prefer to use a direct proof rather than a proof by contradiction. In fact, the definition of unboundedness says that given a positive number $N$, we must find a point $x$ in $B$ such that $k(x) > N$. To do that, choose a prime number $n > N$ such that $1/n$ is less than half the length of the interval $B$.

Since $n$ is prime, $k(m/n) = n$ whenever $m$ is not a multiple of $n$. But since $1/n$ is less than half the length of $B$, it follows that $B$ contains at least two points of the form $m/n$. For at least one of those points, $m$ will not be a multiple of $n$, and so the function $k$ will take the value $n$ at that point. Since $n>N$, this shows that the definition of unboundedness is satisfied for the function $k$ on the interval $B$.
 
Opalg said:
Your proof is correct. (Yes)

As a matter of personal choice, I would prefer to use a direct proof rather than a proof by contradiction. In fact, the definition of unboundedness says that given a positive number $N$, we must find a point $x$ in $B$ such that $k(x) > N$. To do that, choose a prime number $n > N$ such that $1/n$ is less than half the length of the interval $B$.

Since $n$ is prime, $k(m/n) = n$ whenever $m$ is not a multiple of $n$. But since $1/n$ is less than half the length of $B$, it follows that $B$ contains at least two points of the form $m/n$. For at least one of those points, $m$ will not be a multiple of $n$, and so the function $k$ will take the value $n$ at that point. Since $n>N$, this shows that the definition of unboundedness is satisfied for the function $k$ on the interval $B$.
Thank you for your reply.:D
Um.. I have a question. If interval B=(a,b)(b=∞), length of B is infinite. Then how can I prove this?(Because I cannot define an half of the length B when length of B is infinite.)

&

How did you think of an half of length of B? I wonder the inference.
 
bw0young0math said:
If interval B=(a,b)(b=∞), length of B is infinite. Then how can I prove this?(Because I cannot define an half of the length B when length of B is infinite.)
You essentially dealt with this in your original post. If the length of $B$ is infinite, you can replace $B$ by a subinterval of finite length, say a subinterval of length $1$. If the function is unbounded on that subinterval then it is certainly unbounded on the whole interval.

bw0young0math said:
How did you think of an half of length of B? I wonder the inference.
I wanted to ensure that there would be at least two consecutive multiples of $1/n$ in the interval. For that, it is necessary to choose $n$ so that $1/n$ is less than half the length of the interval.
 
Opalg said:
You essentially dealt with this in your original post. If the length of $B$ is infinite, you can replace $B$ by a subinterval of finite length, say a subinterval of length $1$. If the function is unbounded on that subinterval then it is certainly unbounded on the whole interval.I wanted to ensure that there would be at least two consecutive multiples of $1/n$ in the interval. For that, it is necessary to choose $n$ so that $1/n$ is less than half the length of the interval.

Thank you so much!Thank you!
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
48
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K