Abstract Algebra Proof Using the First Isomorphism Theory

Click For Summary
The discussion revolves around proving that the mapping f: ℝ² -> ℝ defined by f(x,y) = 3x - 4y is a homomorphism and onto. The initial claim asserts that f preserves the operation, but there is confusion regarding the proof of surjectivity. It is clarified that to show f is onto, one must demonstrate the existence of an element x in ℝ² for any given b in ℝ such that f(x) = b. The conversation emphasizes the importance of constructing a valid proof for surjectivity to apply the first isomorphism theorem correctly, concluding that ℝ² / Ker(f) is isomorphic to ℝ.
babygotpi
Messages
3
Reaction score
0

Homework Statement


See attatchment. I couldn't upload the picture.

2. The attempt at a solution
I have the following:

Define mapping f: ℝ2 -> ℝ as follows:
f(x,y) = 3x - 4y

Claim: f is a homomorphism

Pick any (x,y) in ℝ2. Then f(x,y) = f(x)*f(y) = 3x - 4y = (x+x+x)-(y+y+y+y) = x+x+x-y-y-y-y = f(x*y). Hence, it perserves the operation.

Claim: f is onto.
Pick any (x,y) in ℝ2 such that (x,y) = (1,0). Then...

I don't think I'm going the right way on showing f is onto.
 

Attachments

  • number 6.png
    number 6.png
    1.6 KB · Views: 511
Physics news on Phys.org
babygotpi said:

Homework Statement


See attatchment. I couldn't upload the picture.

2. The attempt at a solution
I have the following:

Define mapping f: ℝ2 -> ℝ as follows:
f(x,y) = 3x - 4y

Claim: f is a homomorphism

Pick any (x,y) in ℝ2. Then f(x,y) = f(x)*f(y) = 3x - 4y = (x+x+x)-(y+y+y+y) = x+x+x-y-y-y-y = f(x*y). Hence, it perserves the operation.

Claim: f is onto.
Pick any (x,y) in ℝ2 such that (x,y) = (1,0). Then...

I don't think I'm going the right way on showing f is onto.
So for your map f :

By the first isomorphism theorem, if you can show f is a homomorphism that is either surjective or injective. Then the map f is an isomorphism such that f: G/Ker(f) → f(G).

So if f is already a homomorphism say, and you've shown its either 1-1 or onto, then it follows its an isomorphism right? Now could you tell me why its an isomorphism?

Also, welcome to PF.

Hint : What is the structure of N? Is it finite or infinite?
 
Last edited:
Thanks. Glad to be part of PF.
This is my final answer.
Define mapping f: ℝ2 -> ℝ as follows: f(x,y) = 3x - 4y

Claim: f is a homomorphism

Pick any X, X1 ∈ ℝ2 in which X = (x1, y1) and x1 = (x2, y2). Then:

f(x*x1 ) = f(x1+y1, x2+y2) = f(x1+y1) +f(x2 +y2) = f(x+x1 ). Hence, f perserves the operation.

Claim: f is onto

Pick any elemnet of b ∈ ℝ. Let x = (x0, y0) ∈ ℝ2 such that f(x) = 3x0 - 4y0 = b.

Can be rewritten as x = (b+4y0)/3 or ((b+4)/3 , y0) which ∈ ℝ2 . this implies that f is onto. Since ker(f) = N, the first isomorphism theory implies that ℝ2 / N is isomorphic to ℝ.

How does that sound!?
 
babygotpi said:
Thanks. Glad to be part of PF.
This is my final answer.
Define mapping f: ℝ2 -> ℝ as follows: f(x,y) = 3x - 4y

Claim: f is a homomorphism

Pick any X, X1 ∈ ℝ2 in which X = (x1, y1) and x1 = (x2, y2). Then:

f(x*x1 ) = f(x1+y1, x2+y2) = f(x1+y1) +f(x2 +y2) = f(x+x1 ). Hence, f perserves the operation.

Claim: f is onto

Pick any elemnet of b ∈ ℝ. Let x = (x0, y0) ∈ ℝ2 such that f(x) = 3x0 - 4y0 = b.

Can be rewritten as x = (b+4y0)/3 or ((b+4)/3 , y0) which ∈ ℝ2 . this implies that f is onto. Since ker(f) = N, the first isomorphism theory implies that ℝ2 / N is isomorphic to ℝ.

How does that sound!?

Change the x's in this quote into big X and big X1 :

f(x*x1 ) = f(x1+y1, x2+y2) = f(x1+y1) +f(x2 +y2) = f(x+x1 ). Hence, f perserves the operation.

As for you other question :

Well, to show f is onto, you have to show that for any b \in f(N), there exists an a \in N/Ker(f) such that f(a) = b right?
 
I don't understand. Did I not show it was onto?
 
babygotpi said:
I don't understand. Did I not show it was onto?

Your proof wasn't correct. You said immediately to take x such that f(x)=b. But you have to show that such an x actually exists, you can't assert it as true.

You need to start by taking an element b and then actually finding an x such that f(x)=b.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 0 ·
Replies
0
Views
818
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 9 ·
Replies
9
Views
9K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K