- 2,376
- 348
JDoolin said:What you are calculating is the "current age of distant objects." What you probably don't know is that there is a raging controversy on this topic; (well maybe just a one-man-raging-controversy.) Namely Mike Fontenot is arguing that this is an important concept. I agree that it is an important concept. You, apparently agree that it is an important concept.
But General Relativity Experts are claiming that it is NOT an important concept. They apparently think that the "current age of distant objects" is a fabrication.
It is an important concept in SR but ill defined in GR. A distant event is separated in space and in time. The concept of "current age" is an attempt to ignore the spatial distance which is problematic in SR (hence confusion over the twins) and down-right impossible to do in GR.
In GR we cannot extend the t=constant point on the observer's world line as a plane due to curvature of space-time. One can at best define a geodesic "now" hyper-surface tangent to local linear space but that can be topologically peculiar and altered dramatically by intervening masses, not to mention changing over time. Its not the kind of thing one can project out in the absence of distant observations. For example geodesically extending the "right now" space into a black hole will manifest as a time-like surface (with a space-like normal). Also in a deSitter space-time topology you'll have coordinate singularities (all of my past and future "right now" hyperplanes meet at a certain distance.
I see no problem simply rejecting any concept of "current time at distant objects" in GR scale physics. It is very theory dependent and far from operationally meaningful.