Acceleration of electrons in lamp

Click For Summary
SUMMARY

The discussion focuses on calculating the acceleration of electrons in a lamp with an energy of 14,000 eV and a magnetic induction of B = 5.5 x 10-5 T. The correct acceleration is determined to be 6.4 x 1014 m/s2 using the formula a = (qvB)/m, where q is the charge of an electron (1.6022 x 10-19 C) and m is the mass of an electron (9.11 x 10-31 kg). The kinetic energy is converted from eV to Joules to find the velocity of the electrons, which is essential for calculating acceleration.

PREREQUISITES
  • Understanding of kinetic energy and its conversion from eV to Joules
  • Familiarity with the formula F = qvB for calculating force in magnetic fields
  • Knowledge of the mass of an electron (9.11 x 10-31 kg)
  • Basic grasp of the relationship between velocity, acceleration, and force
NEXT STEPS
  • Learn about the Lorentz force and its applications in electromagnetism
  • Study the principles of energy conversion in particle physics
  • Explore advanced topics in relativistic mechanics and mass-energy equivalence
  • Investigate the behavior of charged particles in magnetic fields
USEFUL FOR

Students preparing for physics exams, educators teaching electromagnetism, and anyone interested in the dynamics of charged particles in electric and magnetic fields.

MateuszS
Messages
2
Reaction score
0

Homework Statement



Hello. I have an exam soon so I need to do many exercises. I have a problem with one. I need to get an acceleration of electrons in lamp which energy is 14 000 eV and magnetic induction is B = 5.5*10^(-5) T.

The Attempt at a Solution



The correct result is 6.4*10^14m/s^2 but i don't know how to get it. I tried with F=qVB but without any progress.


Sorry for my English I would be grateful if anybody could correct my mistakes.

Greetings,
Mateusz
 
Physics news on Phys.org
\vec{F} = q\vec{E} + q\big ( \vec{v}\times\vec{B}\big )
 
MateuszS, you are using the correct formula: F=qvB. where v is the velocity of the electrons coming off the lamp.

Notice, 14000eV is the kinetic energy of the electrons coming off the lamp, and this energy can be converted to Joules (J). We can write the kinetic energy as: K=\frac{1}{2}mv^{2}=14000eV=4.4860×10^{-15} J.

It is easy to solve for the velocity v using the kinetic energy.

Your initial equation can be re-written as: F=ma=qvB. where a is the acceleration of the electrons coming off the lamp.

Putting everything together, the final formula will look like this a=\frac{qvB}{m}. where v can be found using the kinetic energy K

The final answer I received was 6.8×10^{14}m/s^{2}

Hope this helps,

Colinven
 
Yes, I did it the same way, but I had a different result... thank you.

Did you multiply energy by 2? It should be 2.24
<br /> 14 000ev = 1.60*10^{-19}*14 000 = 2.24*10^{-15}<br />

Yes, we must multiplay it - but later, when we want to find v in last equation. What did you substitute for q and have you used 9.1*10^{-31} as a mass of electron?
 
Last edited:
I'll show you guys a trick using the mass-energy relation:

\frac{1}{2}mv^2=\frac{1}{2}(mc^2)\frac{v^2}{c^2}= \frac{1}{2} (511\text{eV})\left ( \frac{v}{c}\right )^2= 14000\text{eV} ... so you can do everything in nice numbers!

What do you notice about the relationship between v and c here?
 
Last edited:
MateuszS said:
Yes, we must multiplay it - but later, when we want to find v in last equation. What did you substitute for q and have you used 9.1*10^{-31} as a mass of electron?

Yes I used the mass of the electron as 9.11 E -31 Kg. And "q" is the charge of one electron: 1.6022 E -19 C.
 
Simon Bridge: How can you equate kinetic energy and rest mass energy? The electrons are moving, not at rest.
 
colinven said:
Simon Bridge: How can you equate kinetic energy and rest mass energy? The electrons are moving, not at rest.

Nevermind, I see what you did there! Haha.
 
Cool huh? ;)
It's a very useful relation.
In case someone else misses it - I said that m = (mc^2)/c^2 so I could use the rest-mass energy in there.

But - the relationship between v and c here is very important to this question.
According this calculation - what is the speed of the electron compared to the speed of light?
 
Last edited:
  • #10
That was four days ago... how did you get on?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
11K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 26 ·
Replies
26
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K