Acceleration of the midpoint of a light rod

  • Thread starter Thread starter Bling Fizikst
  • Start date Start date
AI Thread Summary
The discussion revolves around the calculation of the acceleration of the midpoint of a light rod under the influence of a force. Initially, the calculations assumed a rod length of 6l and a center of mass located at 2l from a 2m mass, leading to an incorrect acceleration result. The correct approach involves recognizing that the mass in the diagram is actually 3m, not 2m, which aligns the computed acceleration with the expected answer of F/3m. There is also a debate about whether the cords are inextensible, affecting the interpretation of forces in the system. Ultimately, the confusion stemmed from misinterpreting the mass values in the problem setup.
Bling Fizikst
Messages
119
Reaction score
16
Homework Statement
o
Relevant Equations
o
1747226447229.webp


I assumed the length of the rod to be ##6l## for simpler calculations . Here , $$a_{cm}=\frac{F}{m+2m}=\frac{F}{3m}$$
Here , CM is located at a distance of ##2l## from the ##2m## mass . Writing the moment equation : $$\alpha \times \left[ m(4l)^2+2m(2l)^2\right]=Fl\implies \alpha=\frac{F}{24ml}\implies \alpha l=\frac{F}{24m}$$ $$a_{\text{mid}} = a_{CM}+\alpha l=\frac{F}{3m}+\frac{F}{24m}=\frac{3F}{8m}$$ which doesn't match the answer key .
 
Physics news on Phys.org
If the rod is spinning about its center of mass, replace the masses with the tension developed in each bar (they say inextensible cords - but I don't think that is consistent ) in the FBD of the rod, and you should be using the thin rods moment of inertial about the center of mass then apply ## \sum \tau = I_{cm} \alpha ##

Scratch that, massless rod. Looks fine to me. Did you notice they put a mass of ##3m## in the diagram?

Another thing, maybe they do actually mean cords, i.e. they don't accept compression? It wouldn't hurt if you gave the answer they expect.
 
Last edited:
My bad , the answer matches if I took the mass as given in the diagram , i.e, ##3m## instead of ##2m## . The answer turns out to be : ##\frac{F}{3m}## .
 
Bling Fizikst said:
My bad , the answer matches if I took the mass as given in the diagram , i.e, ##3m## instead of #2m## . The answer turns out to be : ##\frac{F}{3m}## .
That's not your bad, it's their bad!
 
  • Like
Likes Bling Fizikst
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top