We say a point x in X (which is a topological space) is an accumulation point of A if and only if any open set containing x has a non-empty intersection with A-{x}.(adsbygoogle = window.adsbygoogle || []).push({});

Well, I'm creating examples for myself to understand the definition.

Suppose X={a,b,c,d,e} and define T={∅,{a,b},{b,c,d},{a,b,c,d},X}. T is a topology on X. Now I'm trying to find the set of all accumulation points of {b,c,d}.

a,c and d are accumulation points of {b,c,d}, b is not an accumulation point of it, but I'm not sure if I should consider e an accumulation point of {b,c,d} or not because there is no open set containing e in my topology defined on X. Should I consider e an accumulation point because the antecedent in the definition (where it assumes that there exists an open set containing that point) is false for e?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Accumulation point definition.

**Physics Forums | Science Articles, Homework Help, Discussion**