I am curious as to the meaning of, and name given to the phase ##\xi(t)## which may be added as a prefix to the time evolution operator ##\hat{U}(t)##. This phase acts to shift the energy of the dynamical phase ##<{\psi(t)}|\hat{H}(t)|\psi(t)>##, since it appears in the Hamiltonian along the diagonal.(adsbygoogle = window.adsbygoogle || []).push({});

Specifically the time evolution operator can be expressed,

\begin{equation}\nonumber

\hat{U}(t)=e^{-\imath\xi(t)}

\begin{pmatrix}

a+ib & c+id \\

-c+id & a-ib

\end{pmatrix},

\end{equation}

and the related Hamiltonian is given by,

\begin{equation}\nonumber

\hat{H}(t)=i\dot{\hat{U}}(t)\hat{U}^\dagger(t)=\dot{\xi}(t)\hat{\sigma}_{(1)}+\frac{H^x(t)}{2}\hat{\sigma}_{(x)}+\frac{H^y(t)}{2}\hat{\sigma}_{(y)}+\frac{H^z(t)}{2}\hat{\sigma}_{(z)},

\end{equation}

where, ##\hat{\sigma}_{(1)}## is the identity and ##\hat{\sigma}_{(a)}## are the Pauli matrices for ##a=x,y,z##, and

\begin{align} \nonumber

H^x(t)&=2(\dot{a}d-a\dot{d}+\dot{b}c-b\dot{c}), \\

\nonumber

H^y(t)&=2(\dot{a}c-a\dot{c}-\dot{b}d+b\dot{d}),\\

\nonumber

H^z(t)&=2(\dot{a}b-a\dot{b}+\dot{c}d-c\dot{d}).

\end{align}

The phase of interest ##\xi(t)## does not affect the dynamics of the qubit, since it is absent in the density matrix. However, as I understand this phase contributes to the global phase but is itself a different entity than the global phase, since the global phase is present with or without this term. So my question is, what is the meaning and role of this phase and does it have a name ?

Thanks in advance for any help/insight you can offer on this.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Additional Phase factors in SU(2)

Tags:

Loading...

Similar Threads for Additional Phase factors |
---|

I Beam Splitter Phase Shift |

I Phase, Bloch sphere versus Feynman path |

A Berry phase and parallel transport |

A Is the Berry connection compatible with the metric? |

Insights Mathematical Quantum Field Theory - Reduced Phase Space - Comments |

**Physics Forums | Science Articles, Homework Help, Discussion**