siddharth said:
Adiabatic expansions need not be reversible. Consider this example. I have some moles of a gas in an insulated container .Now the gas adiabatically expands against a constant external pressure (p). In this case work done while expanding, that is, in the intergral pdv, is simply -p(v2-v1) as the pressure is constant and equal to external pressure. In this case the work done will not be Pv^gamma though the process is adiabatic but will be -p(v2-v1). The reason is that in a reversible adiabatic expansion, the system and surrondings are almost in equilibirium in every stage. But in an irrerversible expansion we first rapidly increase the pressure to the external pressure and then expand against that pressure.
I disagree, especially with your last two sentences. (BTW the work done is never PV^\gamma. That is just a constant).
If a gas expands adiabatically, this means that the work done by the gas is equal to the change in internal energy. If a gas expands from P1V1 to P2V2 and does work of only P2(V2-V1) then heat is lost to the system because:
P_2(V_2-V_1) < \int_{V_1}^{V_2}Pdv \implies Q \ne 0
So,
by definition, this process cannot be adiabatic.
What happens in a case where a gas at P1V1 does work against an external pressure of P2 where P2<P1, is that the work done by the expanding gas produces kinetic energy as well as doing P2(V2-V1) of work:
\Delta U = P_2(V_2-V_1) + KE = \int_{V_1}^{V_2}Pdv
The work done by the gas is greater than P2(V2-V1) by the amount of this kinetic energy (that area in the PV diagram below the adiabatic gas curve and above the line P=P2).
If this kinetic energy is stored along with the P2(V2-V1) work (for example, by raising a weight and giving it KE and its kinetic energy allowing the weight to move higher after expansion ceases), the gas can be compressed with that stored work back to its original state.
So, I would argue, every truly adiabatic expansion/compression is reversible.
AM