MHB Advanced Functions Average vs. Instantaneous velocity

Wild ownz al
Messages
30
Reaction score
0
What do the average velocities on the very short time intervals [2,2.01] and [1.99,2] approximate? What relationship does this suggest exist between a velocity on an interval [a,b] and a velocity near t=a+b/2 for this type of polynomial?
 
Mathematics news on Phys.org
That looks very much like a question that is asking you to think about what happens when you calculate an "average value" in order to lead you think about what the phrase "instantaneous velocity" could mean! You need to do it, not have someone else do it for you!
If at time t= 1.99 you are at point 2 and at time 2 you are position 2.01, you have moved from 2 to 2.01 so have moved a distance 2.01- 2= 0.01. And you did that in time interval 2- 1.99= 0.01.

If you move a distance 0.01 (km, say) in 0.01 (hours, say) what was your average velocity in that time interval?

Since velocity, in this way, is "the distance moved in a given time interval divided by the length of that time interval", do you see the problem with even defining "velocity at a given interval"?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
33
Views
2K
Replies
4
Views
1K
Replies
9
Views
1K
Replies
1
Views
3K
Replies
10
Views
3K
Replies
13
Views
1K
Back
Top