Let [itex]F_{K}: \hat{K} \to K[/itex] be defined as follows:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]

F_{K}(\hat{x},\hat{y}) = B_{K}\left[\begin{array}{c}

\hat{x}\\

\hat{y}\\

\end{array}\right] + b_{K}

[/tex]

i.e. [itex]F_{K}[/itex] maps from [itex](\hat{x},\hat{y})[/itex] to [itex](x,y)[/itex]. In a more concrete sense, for this example take the following:

[tex]

B_{K} = \left[\begin{array}{cc}

1 & 0\\

1 & 1\\

\end{array}\right], \;\;\;b_{K} = \left[\begin{array}{c}

0\\

0\\

\end{array}\right]

[/tex]

Now suppose we have the function

[tex]

\hat{\phi}(\hat{x},\hat{y}) = 1 - \hat{x} - \hat{y}

[/tex]

and are given that

[tex]

\phi(x,y) = \hat{\phi} \circ F_{K}^{-1}

[/tex]

Computing [itex]F_{K}^{-1}[/itex] is easy:

[tex]

F_{K}^{-1} = B_{K}^{-1}\left(\left[\begin{array}{c}

x\\

y\\

\end{array}\right] - b_{K}\right) = \left[\begin{array}{c}

x\\

y-x\\

\end{array}\right]

[/tex]

so a direct computation of [itex]\phi(x,y)[/itex] gives:

[tex]

\phi(x,y) = 1 - x - (y-x) = 1-y

[/tex]

Consider the point [itex](x,y) = (1/2,0)[/itex]. We have [itex]\phi(1/2,0) = 1[/itex].

However, if we compute via the composition of the inverse, we have [itex]F_{K}^{-1}(1/2,0) = [1/2,-1/2]^{T}[/itex] and [itex]\hat{\phi} \circ F_{K}^{-1}(1/2,1/2) = 1 - 1/2 + 1/2 = 1[/itex].

edit:err, I figured out the error as I was typing this out and corrected it...maybe someone can delete this for me? Or I guess it can be left as an example or something

So what is the reason for this discrepancy and the error in the second way I computed it? This is a subroutine I have to implement in MATLAB and the only way I can do it is by computing the value of [itex]F_{K}^{-1}[/itex] first and then composing it with [itex]\hat{\phi}[/itex], since I can't get an analytical expression for [itex]\phi[/itex] in MATLAB...(I suppose I could but it would be much more tedious than it's worth).

I'm assuming I'm doing something extremely idiotic here, but can't for the life of me figure out what the error is...

If anyone is curious about the context: It's a finite element computation. Some info on the transformations: http://www.math.umn.edu/~sayas002/anIntro2FEM.pdf [Broken] on page 28.

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Affine transformations and their inverse

Loading...

Similar Threads - Affine transformations inverse | Date |
---|---|

B Build an affine/vector space for physics | Wednesday at 3:58 PM |

I Affine transformation and coordinates of maps | May 13, 2017 |

Resetting the Affine Transformation matrix | Jan 3, 2012 |

Normalizing error of affine transformation | Jul 6, 2010 |

Finding an affine transformation matrix | May 19, 2008 |

**Physics Forums - The Fusion of Science and Community**