Air wedge interference pattern after being filled with water

AI Thread Summary
Filling an air wedge with water alters the interference pattern due to the change in refractive index. The book states that the fringe spacing will increase, but calculations suggest it should decrease because the formula for fringe spacing incorporates the refractive index. Specifically, the derived formula for water indicates that the fringe spacing is inversely proportional to the refractive index, which is greater than one. This leads to the conclusion that a higher refractive index means a smaller fringe spacing. The discussion raises doubts about the accuracy of the book's explanation.
Andrew Tom
Messages
14
Reaction score
0
Homework Statement
Air wedge interference pattern after being filled with water
Relevant Equations
##x=\frac{\lambda}{2\tan \theta}##
An air wedge is illuminated with light and an interference pattern is produced. What will happen to the interference pattern when the air wedge is filled with water?

The answer given at the back of the book is that the fringe spacing of the interference pattern will increase, however my reasoning is leading me to the conclusion that it will decrease.

The derivation for fringe spacing given in the book for an air wedge shows that it is ##\frac{\lambda}{2\tan \theta}## where ##\theta## is the wedge angle. When I re-derived the formula using the same reasoning but for water with refractive index n I got the fringe spacing ##\frac{\lambda}{2n\tan\theta}##. So the fringe spacing will decrease because n>1 for water.
 
Last edited:
Physics news on Phys.org
Andrew Tom said:
the interference pattern will increase
Are those the exact words? I don't know what that means.
 
haruspex said:
Are those the exact words? I don't know what that means.
Sorry it says the fringe spacing will increase.
 
Andrew Tom said:
Sorry it says the fringe spacing will increase.
I agree with you. A higher refractive index would mean you don't need to go so far along the wedge for the optical path length to increase by a wavelength.
 
haruspex said:
I agree with you. A higher refractive index would mean you don't need to go so far along the wedge for the optical path length to increase by a wavelength.
So is the book wrong?
 
Andrew Tom said:
So is the book wrong?
I would say so. Others may chip in.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top