MHB Algebra help - a race around a regular polygon

aileenmarymolon
Messages
2
Reaction score
0
Bert and Ernie are running around a regular polygon with x sides, all of length 12m. They start from the same point and run in opposite directions. If Bert is twice as fast as Ernie, how far will Ernie have traveled when they meet?
 
Mathematics news on Phys.org
Re: algebra help

aileenmarymolon said:
Bert and Ernie are running around a regular polygon with x sides, all of length 12m. They start from the same point and run in opposite directions. If Bert is twice as fast as Ernie, how far will Ernie have traveled when they meet?

Hello and welcome to MHB! :D

We ask that our users show their progress (work thus far or thoughts on how to begin) when posting questions. This way our helpers can see where you are stuck or may be going astray and will be able to post the best help possible without potentially making a suggestion which you have already tried, which would waste your time and that of the helper.

Can you post what you have done so far?
 
Re: algebra help

I don't really know where to begin with this question. I know that Speed=distance / Time and that is about it.
 
Re: algebra help

aileenmarymolon said:
I don't really know where to begin with this question. I know that Speed=distance / Time and that is about it.

Well... what is the circumference of the polygon? (Wondering)

Suppose Ernie runs with a speed of 1 m/s, then Bert runs with a speed of 2 m/s.
How far will they have run after, say, 10 seconds?
After x seconds?
And after 2x seconds?
 
First, if they start at the same time, they will have run for the same time when they meet. Since Bert runs twice as fast as Ernie, he will have run twice as far as Ernie. That means that Bert will have run 2/3 of the way around the track and Ernie 1/3.
 
aileenmarymolon said:
Bert and Ernie are running around a regular polygon with x sides, all of length 12m.
They start from the same point and run in opposite directions.
If Bert is twice as fast as Ernie, how far will Ernie have traveled when they meet?
Bert's speed is twice that of Ermie.
Hence, Bert's distance (for a particular time) is twice that of Ernie.

When they first meet, their total distance is the perimeter, P = 12x meters.

Bert's distance is \tfrac{2}{3}P.
Ernie's distance is \tfrac{1}{3}P

Therefore . . .
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top