1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Algebraic Manipulation of Equations

  1. Nov 17, 2014 #1
    1. The problem statement, all variables and given/known data
    I have two equations. The first is for all of the forces on a hanging mass from a pulley. The second is for the sum of the torques about the pulley from which the mass hangs. I simply have to combine the equations to find the acceleration of the object. I have attempted every algebraic manipulation I can think of and keep coming out with the wrong answer. Please help.

    2. Relevant equations
    T-mg=ma (for the sum of forces on the hanging mass)
    Tr=I(-a/r) (for the torques about the pulley)

    Here, T is tension, m is the mass of the hanging object, a is the acceleration, r is the radius of the pulley, I is the moment of inertia of the pulley.

    I'm supposed to combine the two equations to eliminate T and solve for a.


    3. The attempt at a solution
    OK, solve equation 1 for T.

    T = ma + mg

    Cool, now plug into equation 2.

    (ma+mg)r=I(-a/r)
    mr(a+g)=I(-a/r)
    a+g=I(-a/mr^2)
    1+g/a=I/mr^2
    g/a=-I/mr^2-1
    a = -(gmr^2)/(I)-g

    I keep coming out with the same exact solution every time, but it is apparently wrong. Can someone tell me where I went wrong?
     
  2. jcsd
  3. Nov 17, 2014 #2

    Simon Bridge

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    About line 3 and 4...

    a+g=I(-a/mr^2)
    1+g/a=I/mr^2

    I think you mislaid a minus sign there.
    But you are also going about it the long way.
    When you had:

    (ma+mg)r=I(-a/r)

    That simplifies to ##mr^2a+mr^2g = -Ia##
    ...now get all terms involving "a" on the LHS and put everything else of the RHS.
     
  4. Nov 17, 2014 #3
    a(mr2 I) = -mgr2

    a = -(mgr2)/(mr2+I)

    Thank you, that's correct. I could cry tears of joy.
     
  5. Nov 17, 2014 #4

    Simon Bridge

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    No worries - for the future, it is often useful to try getting rid of all the denominators so you can write the equation out on one line.
    Makes the equations easier to type too.
    After that it's just a matter of grouping the term you want to solve for on one side.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Algebraic Manipulation of Equations
  1. Algebraic manipulation (Replies: 1)

Loading...