Dummit and Foote in their book Abstract Algebra give the following definition of an algebraically closed field ... ...(adsbygoogle = window.adsbygoogle || []).push({});

From the remarks following the definition it appears that the definition only applies to ##K[x]## ...

Does it also apply to ##K[x_1, x_2], K[x_1, x_2, x_3], \ ... \ ... \ , K[x_1, x_2, \ ... \ ... \ , x_n] , \ ... \ ... \ ...## ?

That is ... when we say K is an algebraically closed field does it imply that every polynomial in ##K[x_1, x_2, \ ... \ ... \ , x_n]## has a root in ##K## ... ... ?

... ... or maybe it is better if I say ... how does the definition of algebraically closed generalise to ##K[x_1, x_2, \ ... \ ... \ , x_n]## ... ... ?

Hope someone can clarify this issue ... ...

Peter

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Algebraically Closed Fields

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**