MHB Alll Positive Integers proof by contraposition

AI Thread Summary
The discussion revolves around proving that for all positive integers \( n \), \( r \), and \( s \), if \( rs \le n \), then either \( r \le \sqrt{n} \) or \( s \le \sqrt{n} \). A participant expresses confusion about the inequalities derived from assuming \( r > \sqrt{n} \) and \( s > \sqrt{e} \), specifically questioning the transition from \( sr > s\sqrt{n} \) to \( rs > \sqrt{ns} \). Another contributor clarifies that for any positive number, \( s \geq \sqrt{s} \), which helps establish the relationship between the inequalities. The conversation emphasizes understanding the manipulation of inequalities in the context of positive integers. The proof ultimately hinges on correctly applying properties of square roots and inequalities.
tmt1
Messages
230
Reaction score
0
For all positive integers $n$, $r$, and $s$, if $rs \le n$ then $r \le\sqrt{n}$ or $s \le \sqrt{n}$

Proof:

Suppose $r$ , $s$ and $n$, are integers and $r > \sqrt{n}$ and $ s > \sqrt{e}$.

Multiply both sides of the first inequality by $s$.

I get $sr > s\sqrt{n} $, but the book gives $rs > \sqrt{ns}$. How is this possible.

Also, if I multiply the second inequality by $\sqrt{n}$, I get $s \sqrt{n}> n$, but the book gives $\sqrt{ns} > n$ . What am I doing wrong?
 
Mathematics news on Phys.org
tmt said:
For all positive integers $n$, $r$, and $s$, if $rs \le n$ then $r \le\sqrt{n}$ or $s \le \sqrt{n}$

Proof:

Suppose $r$ , $s$ and $n$, are integers and $r > \sqrt{n}$ and $ s > \sqrt{e}$.

Multiply both sides of the first inequality by $s$.

I get $sr > s\sqrt{n} $, but the book gives $rs > \sqrt{ns}$. How is this possible.

Also, if I multiply the second inequality by $\sqrt{n}$, I get $s \sqrt{n}> n$, but the book gives $\sqrt{ns} > n$ . What am I doing wrong?

Hi tmt,

Note that for any positive number, $s\geq\sqrt{s}$. Therefore, $sr > s\sqrt{n}\geq\sqrt{s}\sqrt{n}=\sqrt{sn}$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top