A Alpha Stopping Power Database for High Z Materials

sussybaka
Messages
1
Reaction score
0
TL;DR Summary
Looking for a database/calculation software to obtain alpha stopping power in high Z materials, especially americium. All the databases I know of (ASTAR/SRIM) only report up to Uranium and I can't find any measurements in literature. Thanks!
That's about it. I've been trying to do the calculation manually with Bethe-Bloche without corrections in the energy range I'm interested in (1-10 MeV) for the highest Z material with data available for validation (Uranium), but I can't get a result that agree well with the database, so I'm hoping to find a software that has this calculation already done. Thanks for the help!
 
Physics news on Phys.org
Americium will be very similar to uranium (in terms of MeV/(g/cm2)). If the difference matters then you probably have so much americium that you have a lot of regulatory problems to solve first.
 
  • Like
Likes Vanadium 50, Astronuc and berkeman
mfb said:
Americium will be very similar to uranium (in terms of MeV/(g/cm2)).
I concur. I was thinking about this. Let's assume one has Am-241. Z = 95, so the nuclear stopping power is slightly greater, but the density of Am is ~13.67 g/cm3 compared to that for U of 19.6 g/cm3, so the electron density is quite a bit less, so the range could be slightly greater.

A Wikipedia article on Americium has density around 12 g/cm3, which appears to be incorrect given the other more reliable sources. Ref: https://en.wikipedia.org/wiki/Americium#Physical_properties
rsc.org also has density of 12 g/cm3. Refl: https://www.rsc.org/periodic-table/element/95/americium I wonder if they are reporting the density of AmO2.

CRC's Handbook of Physics and Chemistry, 68th edition, has density of Am as 13.67 g/cm3, which is consistent with some chemical suppliers, e.g., Lenntech, and Jefferson Lab.
https://www.lenntech.com/periodic/elements/am.htm
https://education.jlab.org/itselemental/ele095.html
 
sussybaka said:
TL;DR Summary: Looking for a database/calculation software to obtain alpha stopping power in high Z materials, especially americium. All the databases I know of (ASTAR/SRIM) only report up to Uranium and I can't find any measurements in literature. Thanks!

That's about it. I've been trying to do the calculation manually with Bethe-Bloche without corrections in the energy range I'm interested in (1-10 MeV) for the highest Z material with data available for validation (Uranium), but I can't get a result that agree well with the database, so I'm hoping to find a software that has this calculation already done. Thanks for the help!
Have you looked at Geant4? I think you can do it using it?
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top