Alternate form of Principle of superposition

Click For Summary
The discussion focuses on the Principle of Superposition, specifically its formulation. The initial definition is presented as a conditional statement involving linear operators and solutions. A proposed alternative formulation is examined, leading to a combined expression that asserts equivalence between the two forms. The importance of including "any coefficients c1 and c2" is emphasized to clarify the reasoning. Overall, the discussion confirms the validity of the rewritten principle.
member 731016
Homework Statement
I am trying to reword my textbook definition of the principle of superposition in terms of propositional logic
Relevant Equations
$$L[y] = y^{''} + p(t)y^{'} + q(t)y = 0$$
The definition is,
1712891868313.png

I rewrite it as $$(L[y_1] = L[y_2] = 0) \rightarrow (L[c_1y_1 + c_2y_2] = 0)$$.

However, I also wonder, whether it could also be rewritten as,

$$(L[c_1y_1 + c_2y_2] = 0) \rightarrow (L[y_1] = L[y_2] = 0) $$

And thus, combining, the two cases,

Principle of superposition. $$(L[c_1y_1 + c_2y_2] = 0) ↔ (L[y_1] = L[y_2] = 0)$$

Is my reasoning correct please?

Thanks for any help!
 
Physics news on Phys.org
As long as you include the statement about ”any coefficients ##c_1## and ##c_2##” it is obvious that if ##L[c_1y_1 + c_2y_2] = 0## then each of the ys is a solution.
 
  • Like
  • Love
Likes member 731016 and DaveE
Orodruin said:
As long as you include the statement about ”any coefficients ##c_1## and ##c_2##” it is obvious that if ##L[c_1y_1 + c_2y_2] = 0## then each of the ys is a solution.
Thank you for your reply @Orodruin!

Yes that is a good idea to quantify my statement with ∀ to give

$$(L[c_1y_1 + c_2y_2] = 0) ↔ (L[y_1] = L[y_2] = 0)$$ $$∀c_1, c_2 ∈ \mathbb{R}$$


Thanks!
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...