Ampere's Law -- What is the meaning behind each part?

  • Thread starter Thread starter np115
  • Start date Start date
  • Tags Tags
    Ampere's law Law
AI Thread Summary
Ampere's Law relates the magnetic field around a current-carrying wire to the current itself, expressed as S B · dl = μ₀I. The discussion centers on calculating the magnetic field at a point outside a wire, with the question of whether to use B(2πa) or B(2πb). It is clarified that a single current-carrying wire does not create a uniform magnetic field, but symmetry allows for simplifications in calculations. The correct approach involves using a circular path of radius R around the wire to derive B(R) using Ampere's circuital law. Understanding these concepts is crucial for applying Ampere's Law correctly in various scenarios.
np115
Messages
5
Reaction score
3
Homework Statement
So I know that SB · dl = u0I (sorry this is the only way that was working). But I was wondering what each part meant? Cause in Gauss's law, the SE · dA is the object that is being used to calculate electric field and in Ampere's, it is meant to be similar. So if we had a wire of radius a. This wire creates a uniform field. If we had to calculate the field at point b outside the wire, what would the equation look like? From what I have learned, we would use a circle for this. So B(2pi a) or B(2pi b)?
Relevant Equations
S B · dl = u0I
I believe it would be B(2pi b) but I'm not sure how exactly to explain why.
 
Physics news on Phys.org
np115 said:
Homework Statement:: So I know that SB · dl = u0I (sorry this is the only way that was working). But I was wondering what each part meant? Cause in Gauss's law, the SE · dA is the object that is being used to calculate electric field and in Ampere's, it is meant to be similar. So if we had a wire of radius a. This wire creates a uniform field. If we had to calculate the field at point b outside the wire, what would the equation look like? From what I have learned, we would use a circle for this. So B(2pi a) or B(2pi b)?
Relevant Equations:: S B · dl = u0I

I believe it would be B(2pi b) but I'm not sure how exactly to explain why.
You need to read Ampere's law carefully.
 
np115 said:
This wire creates a uniform field. If we had to calculate the field at point b outside the wire, what would the equation look like?
No wire creates a uniform magnetic field.
If you wanted to calculate the electric field due to a charged sphere of radius ##a## at point ##b## outside the sphere, would you use ##E (4 \pi a^2)## or ##E (4 \pi b^2)## on the left hand side of the equation for Gauss's law? Why?

I agree with @rude man: study Ampere's law some more and pay attention to how it is used in your textbook's examples.
 
Of course a single current-conducting wire doesn't create a uniform magnetic field, but you can use symmetry for the simple case of an infinitely long wire. You know by symmetry that the magnetic field is always of the form ##\vec{B}(\vec{r})=B(R) \vec{e}_{\varphi}##, where I've put the wire along the ##z##-axis of a cylinder-coordinate system ##(R,\varphi,z)##.

To get ##B(R)## just use Ampere's circuital law with a circle of radius ##R## around the ##z##-axis in a plane perpendicular to the ##z##-axis.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top