Amplitude of harmonic oscillation given position and velocity

AI Thread Summary
The discussion revolves around finding the amplitude of harmonic oscillation given initial position and velocity. The key formula derived is a = √(x₀² + (v₀/ω)²), which relates amplitude to initial conditions. Participants suggest using trigonometric identities and standard equations of motion to simplify the derivation. There's also mention of using the phase factor to derive the equations, although a more straightforward approach is recommended. Ultimately, the conversation emphasizes understanding the relationships between displacement, velocity, and amplitude in simple harmonic motion.
zenterix
Messages
774
Reaction score
84
Homework Statement
A particle performs harmonic oscillations along the ##x##-axis about the equilibrium position ##x=0##. The oscillation frequency is ##\omega=4\text{s}^{-1}##.

At a certain moment of time the particle has a coordinate ##x_0=25\text{cm}## and its velocity is equal to ##v_{x0}=100\text{cm/s}##.

Find the coordinate ##x## and the velocity ##v_x## of the particle ##t=2.40\text{s}## after that moment.
Relevant Equations
##x(t)=a\cos{(\omega t-\phi)}##
##v(t)=-a\omega\sin{(\omega t-\phi)}##

##x(0)=a\cos{(-\phi)}=x_0##

##v(0)=-a\omega\sin{(-\phi)}=v_0##

##\implies \tan{(-\phi)}=-\frac{v_0}{\omega x_0}##

##\implies \phi=-\tan{\left (-\frac{v_0}{\omega x_0}\right )}##

The solution to this problem says that we can find ##a=\sqrt{x_0^2+(v_{x0}/\omega)^2}##

How do we find this expression?

For the given values of ##\omega, x_0##, and ##v_{x0}## we have ##\phi=-\frac{\pi}{4}## and so we can find that

##\phi=-\frac{\pi}{4}##

##x(0)=a\frac{\sqrt{2}}{2}=x_0##

##a=\frac{2x_0}{\sqrt{2}}##
 
Physics news on Phys.org
The answer seems to be that we multiply the equation for ##x(0)## by ##\omega##, square it, add it to the square of the ##v(0)## equation, and solve for ##a##.

I wonder if there is a simpler way that comes about through intuition about the meaning of the equations. At least for me this was just an algebraic trick.
 
From your expression for ##x(0)##, $$a^2=\frac {x_0^2} {cos^2(-\phi)}$$
From trig, $$cos^2(\alpha)=\frac 1 {1+tan^2(\alpha)}$$
Then, algebra...
 
Last edited:
zenterix said:
The solution to this problem says that we can find ##a=\sqrt{x_0^2+(v_{x0}/\omega)^2}##

How do we find this expression?
It’s conventional to use upper case ##A## for amplitude. (Lower case ##a## is acceleration.) So another way to get the above formula is:

##x(t) = A \cos(\omega t - \phi)##
##v(t) = -A\omega \sin(\omega t - \phi)##
Use ##\cos^2 + \sin^2 = 1## and this will give the formula relating ##A, \omega, x## and ##v##.

If you’re allowed to use it directly, there is a handy 'standard' SHM formula for velocity as a function of displacement: ##v = \pm \omega \sqrt{A^2 -x^2}##. This can easily be rearranged to give the formula for ##A##.
 
  • Like
Likes SammyS and PeroK
If I was looking at this problem for the first time, I would do this.

Take ##t = 0## when the object is at the origin. Then, the equation of motion is:
$$x = A\sin(\omega t)$$That must be easier than messing about with a phase factor. Then, of course:$$v = \omega A\cos(\omega t)$$You are given ##\omega## and ##x_0, v_0## at some unknown time ##t_0##. That's two equations in two unknowns. Solve for ##t_0## and ##A##, then plug in ##t_0 + 2.4s##.

Even if that's not the neatest or quickest way, it's the sort of thing you should be able to do by now.

PS as a byproduct, you get the expression for ##A## when you eliminate ##t_0##.
 
Last edited:
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top