It is true that at resonance frequency the phase-shift between input and output is 90 degrees, so my mind would think that this is ok. But I am kind of unsure because of the whole dividing by zero part.
If this isn't allowed: is there any way to calculate/measure the damping coefficient with...
Homework Statement
The question is similar to last week’s, except that we will consider how friction may damp the oscillation with time. A block with mass m shown in the drawing is acted on by a spring with spring constant k. The block is pulled distance [x[/0] from equilibrium position (x=0)...
Homework Statement
The ground state energy of 5 identical spin 1/2 particles which are subject to a one dimensional simple harkonic oscillator potential of frequency ω is
(A) (15/2) ħω
(B) (13/2) ħω
(C) (1/2) ħω
(D) 5ħω
Homework Equations
Energy of a simple harmonic oscillator potential is
En...
For the harmonic oscillator, I'm trying to study qualitative plots of the wave function from the one-dimensional time independent schrodinger equation:
\frac{d^2 \psi(x)}{dx^2} = [V(x) - E] \psi(x)
If you look at the attached image, you'll find a plot of the first energy eigenfunction for...
Hello, I encountered a mass on a string problem in which the mass, moved from the equilibrium, gets a harmonic motion. The catch, however, is that the mass of the string is not neglected. On the lecture, the prof. wanted to calculate, for some reason, the complete kinetic energy of the system...
Homework Statement
A three-dimensional harmonic oscillator is in thermal equilibrium with a temperature reservoir at temperature T. The average total energy of oscillator is
A. ½kT
B. kT
C. ³⁄₂kT
D. 3kT
E. 6kT
Homework Equations
Equipartition theorem
The Attempt at a Solution
So I know the...
Homework Statement
A uniform rod of mass m and length L is freely pivoted at one end. What is the period of its oscillations? Icm for a uniform rod rotating about its centre of mass is 1/12mL2
(a) √3g/2L
(b) 2π √3L/2g
(c) 2π √2L/3g
(d) 2π √L/g
(e) none of the above
Homework Equations
ω2 =...
(a) A wave traveling on a Slinky® that is stretched to 4.5 m takes 2.6 s to travel the length of the Slinky and back again. What is the speed of the wave?
For this one, I did v = d/t
= 4.5 m / 2.6 s
= 1.73 m/s
Then I did v = (1.73)(2) = 3.46 m/s
This is correct
(b) Using the same Slinky...
Homework Statement
Compare the simple harmonic motion of two identical masses oscillating up and down on springs with different spring constants.
Homework Equations
F = -kx
The Attempt at a Solution
Okay, so I understand that the higher the spring constant, the harder it is to compress the...