An application of the law of cosines?

  • Context: MHB 
  • Thread starter Thread starter Kobzar
  • Start date Start date
  • Tags Tags
    Application Law
Click For Summary
SUMMARY

The discussion centers on the application of the law of cosines in the context of a mathematical problem presented in Dom Néroman's "La leçon de Platon." The user identifies a potential error in Néroman's formula regarding the ratio of PM to PH, specifically the ambiguous $\pm$ sign and the incorrect placement of PH in the formula. The correct formulations are established as either $$\tfrac{PM}{PH} = \tfrac1{4\sqrt{1+\tan^2i}}\bigl(3 + \sqrt{25 + 16\tan^2i}\bigr)$$ or $$PM = \tfrac{PH}{4\sqrt{1+\tan^2i}}\bigl(3 + \sqrt{25 + 16\tan^2i}\bigr).

PREREQUISITES
  • Understanding of trigonometric functions, specifically tangent.
  • Familiarity with algebraic manipulation of equations.
  • Knowledge of the law of cosines and its applications.
  • Basic mathematical notation and symbols used in equations.
NEXT STEPS
  • Study the derivation of the law of cosines in various contexts.
  • Learn about the implications of ambiguous signs in mathematical formulas.
  • Explore advanced algebra techniques for simplifying complex equations.
  • Investigate the historical context of mathematics in Plato's works.
USEFUL FOR

Mathematicians, educators, students of mathematics, and anyone interested in the intersection of music theory and mathematical principles as discussed in classical texts.

Kobzar
Messages
11
Reaction score
0
Hello, everybody:

I am a philologist who is fond of mathematics, but who unfortunately has just an elementary high school knowledge of them. I am translating La leçon de Platon, by Dom Néroman (La Bégude de Mazenc, Arma Artis, 2002), which deals with music theory and mathematics in the works of Plato. The problem which brings me here is not about translation, but about mathematics. I am attaching a file with my problem and what I have tried so far to solve it.

Thank you very much in advance and best greetings.
 

Attachments

Mathematics news on Phys.org
In fact, your answer is essentially the same as Néroman's. You have shown that $$\begin{aligned}\frac{PM}{PH} &= \frac{6\pm\sqrt{36 + 64(1 + \tan^2i)}}{8\sqrt{1+\tan^2i}} \\ &= \frac{6\pm\sqrt{100 + 64\tan^2i)}}{8\sqrt{1+\tan^2i}} \\ &= \frac{6\pm\sqrt{4(25 + 16\tan^2i)}}{8\sqrt{1+\tan^2i}} \\ &= \frac{6\pm\sqrt{4}\sqrt{25 + 16\tan^2i}}{8\sqrt{1+\tan^2i}} \\ &= \frac{6\pm2\sqrt{25 + 16\tan^2i}}{8\sqrt{1+\tan^2i}}. \end{aligned}$$ Now divide top and bottom of the fraction by $2$ to get $$\frac{PM}{PH} = \frac{3\pm\sqrt{25 + 16\tan^2i}}{4\sqrt{1+\tan^2i}}.$$ That is exactly Néroman's formula apart from two things. One of these is the ambiguous $\pm$ sign. That is resolved by the fact that the $+$ sign gives the ratio $\frac{PM}{PH}$, and the $-$ sign gives the ratio $\frac{Pm}{PH}$. The other anomaly is the $PH$ (or $h$) that occurs in Néroman's formula. That must be a mistake on his part. The formula should be either $$\tfrac{PM}{PH} = \tfrac1{4\sqrt{1+\tan^2i}}\bigl(3 + \sqrt{25 + 16\tan^2i}\bigr)$$ or $$PM = \tfrac{PH}{4\sqrt{1+\tan^2i}}\bigl(3 + \sqrt{25 + 16\tan^2i}\bigr).$$ But he appears to have mistakenly put the $PH$ on both sides of the formula.
 
Opalg said:
In fact, your answer is essentially the same as Néroman's. You have shown that $$\begin{aligned}\frac{PM}{PH} &= \frac{6\pm\sqrt{36 + 64(1 + \tan^2i)}}{8\sqrt{1+\tan^2i}} \\ &= \frac{6\pm\sqrt{100 + 64\tan^2i)}}{8\sqrt{1+\tan^2i}} \\ &= \frac{6\pm\sqrt{4(25 + 16\tan^2i)}}{8\sqrt{1+\tan^2i}} \\ &= \frac{6\pm\sqrt{4}\sqrt{25 + 16\tan^2i}}{8\sqrt{1+\tan^2i}} \\ &= \frac{6\pm2\sqrt{25 + 16\tan^2i}}{8\sqrt{1+\tan^2i}}. \end{aligned}$$ Now divide top and bottom of the fraction by $2$ to get $$\frac{PM}{PH} = \frac{3\pm\sqrt{25 + 16\tan^2i}}{4\sqrt{1+\tan^2i}}.$$ That is exactly Néroman's formula apart from two things. One of these is the ambiguous $\pm$ sign. That is resolved by the fact that the $+$ sign gives the ratio $\frac{PM}{PH}$, and the $-$ sign gives the ratio $\frac{Pm}{PH}$. The other anomaly is the $PH$ (or $h$) that occurs in Néroman's formula. That must be a mistake on his part. The formula should be either $$\tfrac{PM}{PH} = \tfrac1{4\sqrt{1+\tan^2i}}\bigl(3 + \sqrt{25 + 16\tan^2i}\bigr)$$ or $$PM = \tfrac{PH}{4\sqrt{1+\tan^2i}}\bigl(3 + \sqrt{25 + 16\tan^2i}\bigr).$$ But he appears to have mistakenly put the $PH$ on both sides of the formula.
Thank you very much!
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 9 ·
Replies
9
Views
4K