MHB An integral representation of the Hurwitz zeta function

polygamma
Messages
227
Reaction score
0
For $ \text{Re} (a) >0$ and $\text{Re} (s)>1$, the Hurwitz zeta function is defined as $ \displaystyle \zeta(s,a) = \sum_{n=0}^{\infty} \frac{1}{(a+n)^{s}} $.

Notice that $\zeta(s) = \zeta(s,1)$.

So the Hurwitz zeta function is a generalization of the Riemann zeta function.

And just like the Riemann zeta function, the Hurwitz zeta function can be continued analytically to all complex values of $s$ excluding $s=1$.

One way to see this is an integral representation that generalizes the one I recently posted for the Riemann zeta function.

$\displaystyle \zeta(s,a) = 2 \int_{0}^{\infty} \frac{\sin (s \arctan \frac{t}{a} )}{(a^{2}+t^{2})^{s/2} (e^{2 \pi t}-1)} \ dt + \frac{1}{2a^{s}} + \frac{a^{1-s}}{s-1} $

The derivation of this integral representation shouldn't be that much different.

But since this representation is stated almost nowhere, I thought it would be something interesting to post.EDIT: It actually is stated on Wolfram MathWorld.
 
Last edited:
Mathematics news on Phys.org
Using contour integration makes the derivation/proof so much easier.
 
You can derive a simple yet exotic-looking representation of the gamma function from this integral representation of the Hurwitz zeta function.$$ \frac{\partial }{\partial s} \zeta(s,a) \Big|_{s=0} = \zeta'(0,s) = 2 \int_{0}^{\infty} \frac{\arctan (\frac{t}{a})}{e^{2 \pi t}-1} \ dt - \frac{\log a}{2} + a \log a -a $$Binet's integral formula once again states $$ \int_{0}^{\infty} \frac{\arctan \left( \frac{x}{z} \right)}{e^{2 \pi x} -1} \ dx = \ln \Gamma(z) - \left( z- \frac{1}{2} \right) \ln z + z - \frac{\ln (2 \pi)}{2} $$So

$$ \zeta'(0,a) = \log \Gamma(a) - a \log a + \frac{\log a}{2} + a - \frac{\log (2 \pi)}{2} - \frac{\log a}{2} + a \log a -a = \ln \Gamma(a) - \frac{\log (2 \pi)}{2}$$

$$ \implies \Gamma(a) = \sqrt{2 \pi} e^{\zeta'(0,a)} $$(Speechless)

I think my brain just exploded a little bit.
 
Nicely done, RV! (Clapping)

I think I might have recommended this link before, but just in case, the following paper of Adamchik contains quite a few integrals analogous to the one above...

http://arxiv.org/pdf/math/0308086v1.pdf
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top