MHB An integral representation of the Hurwitz zeta function

Click For Summary
SUMMARY

The Hurwitz zeta function, defined for $\text{Re} (a) > 0$ and $\text{Re} (s) > 1$ as $\zeta(s,a) = \sum_{n=0}^{\infty} \frac{1}{(a+n)^{s}}$, generalizes the Riemann zeta function, where $\zeta(s) = \zeta(s,1)$. This function can be analytically continued to all complex values of $s$ except $s=1$. An integral representation of the Hurwitz zeta function is given by $\zeta(s,a) = 2 \int_{0}^{\infty} \frac{\sin (s \arctan \frac{t}{a})}{(a^{2}+t^{2})^{s/2} (e^{2 \pi t}-1)} \ dt + \frac{1}{2a^{s}} + \frac{a^{1-s}}{s-1}$. This representation facilitates the derivation of related functions, including the gamma function.

PREREQUISITES
  • Understanding of complex analysis, particularly analytic continuation
  • Familiarity with the Riemann zeta function and its properties
  • Knowledge of integral calculus and contour integration techniques
  • Basic understanding of gamma functions and their representations
NEXT STEPS
  • Study the properties of the Riemann zeta function and its analytic continuation
  • Explore integral representations of special functions, focusing on the gamma function
  • Learn about contour integration methods in complex analysis
  • Investigate the Negapolygamma functions and their applications
USEFUL FOR

Mathematicians, researchers in number theory, and students of complex analysis seeking to deepen their understanding of special functions and their integral representations.

polygamma
Messages
227
Reaction score
0
For $ \text{Re} (a) >0$ and $\text{Re} (s)>1$, the Hurwitz zeta function is defined as $ \displaystyle \zeta(s,a) = \sum_{n=0}^{\infty} \frac{1}{(a+n)^{s}} $.

Notice that $\zeta(s) = \zeta(s,1)$.

So the Hurwitz zeta function is a generalization of the Riemann zeta function.

And just like the Riemann zeta function, the Hurwitz zeta function can be continued analytically to all complex values of $s$ excluding $s=1$.

One way to see this is an integral representation that generalizes the one I recently posted for the Riemann zeta function.

$\displaystyle \zeta(s,a) = 2 \int_{0}^{\infty} \frac{\sin (s \arctan \frac{t}{a} )}{(a^{2}+t^{2})^{s/2} (e^{2 \pi t}-1)} \ dt + \frac{1}{2a^{s}} + \frac{a^{1-s}}{s-1} $

The derivation of this integral representation shouldn't be that much different.

But since this representation is stated almost nowhere, I thought it would be something interesting to post.EDIT: It actually is stated on Wolfram MathWorld.
 
Last edited:
Mathematics news on Phys.org
Using contour integration makes the derivation/proof so much easier.
 
You can derive a simple yet exotic-looking representation of the gamma function from this integral representation of the Hurwitz zeta function.$$ \frac{\partial }{\partial s} \zeta(s,a) \Big|_{s=0} = \zeta'(0,s) = 2 \int_{0}^{\infty} \frac{\arctan (\frac{t}{a})}{e^{2 \pi t}-1} \ dt - \frac{\log a}{2} + a \log a -a $$Binet's integral formula once again states $$ \int_{0}^{\infty} \frac{\arctan \left( \frac{x}{z} \right)}{e^{2 \pi x} -1} \ dx = \ln \Gamma(z) - \left( z- \frac{1}{2} \right) \ln z + z - \frac{\ln (2 \pi)}{2} $$So

$$ \zeta'(0,a) = \log \Gamma(a) - a \log a + \frac{\log a}{2} + a - \frac{\log (2 \pi)}{2} - \frac{\log a}{2} + a \log a -a = \ln \Gamma(a) - \frac{\log (2 \pi)}{2}$$

$$ \implies \Gamma(a) = \sqrt{2 \pi} e^{\zeta'(0,a)} $$(Speechless)

I think my brain just exploded a little bit.
 
Nicely done, RV! (Clapping)

I think I might have recommended this link before, but just in case, the following paper of Adamchik contains quite a few integrals analogous to the one above...

http://arxiv.org/pdf/math/0308086v1.pdf
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K