Undergrad An integral with a delta-function

  • Thread starter Thread starter Haorong Wu
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
The discussion centers on the evaluation of an integral involving a delta function in the context of quantum field theory, specifically referencing David Tong's notes. The integral is analyzed using the delta function's properties, leading to two different results: one yielding a value of 1 and the other suggesting an infinite result. The confusion arises from the interpretation of the delta function's definition and its dimensions within the integral. The key identity used to clarify the situation is that the delta function can be expressed in terms of its roots and derivatives, which ultimately leads to the correct evaluation of the integral. Understanding this identity is crucial for resolving the discrepancies in the calculations.
Haorong Wu
Messages
419
Reaction score
90
TL;DR
How to calculate this integral?
It is from David Tong's note for QFT. The equation states
##\left . \int d^4 p \cdot \delta \left ( p^2_0 -{\vec p}^2 -m^2 \right ) \right | _{p_0>0} =\left . \int \frac {d^3 p} {2 p_0} \right |_{p_0=E_{\vec p}}##
where ##p## is a 4-vector ##p=\left ( p_0, \vec p \right )##.

In my calculation, I get
##\left . \int d^4 p \cdot \delta \left ( p^2_0 -{\vec p}^2 -m^2 \right ) \right | _{p_0>0} =\left . \int d^3 p \int d p_0 \cdot \delta \left ( p^2_0 -{\vec p}^2 -m^2 \right ) \right | _{p_0>0}=\left . \int d^3 p \cdot 1 \right | _{p_0>0}=1## or
##\left . \int d^4 p \cdot \delta \left ( p^2_0 -{\vec p}^2 -m^2 \right ) \right | _{p_0>0} =\left . \int d^3 p \int d p_0 \cdot \delta^{\left ( 3 \right )} \left ( p^2_0 -{\vec p}^2 -m^2 \right ) \delta ^{\left ( 1 \right )}\left ( p^2_0 -{\vec p}^2 -m^2 \right ) \right | _{p_0>0}=\left . \int d^3 p \cdot \delta^{\left ( 3 \right )} \left ( 0 \right ) \right | _{p_0>0}## which is infinite.

Maybe I get a wrong definition for the delta function in this integral? What is the dimension of the delta function in this integral?
 
Physics news on Phys.org
The key to this is the identity
$$\delta \left(f(x)\right)=\frac{\delta(x-x_0)}{\left| f'(x_0)\right|}$$
where ##x_0## is a zero of f(x). In this case, ##f(x)=x^2 - x_0^2##, ##x=p_0##, and ##x_0=\sqrt{\vec{p}^2+m^2}=E_{\vec{p}}##. This gives me the correct answer.
 
  • Like
Likes Haorong Wu
Isaac0427 said:
The key to this is the identity
$$\delta \left(f(x)\right)=\frac{\delta(x-x_0)}{\left| f'(x_0)\right|}$$
where ##x_0## is a zero of f(x). In this case, ##f(x)=x^2 - x_0^2##, ##x=p_0##, and ##x_0=\sqrt{\vec{p}^2+m^2}=E_{\vec{p}}##. This gives me the correct answer.
Oh, thanks, @Isaac0427 .
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K