An integral with a delta-function

  • I
  • Thread starter Haorong Wu
  • Start date
  • Tags
    Integral
In summary, the conversation discussed an equation from David Tong's note for QFT that involved a 4-vector and the delta function. The speaker provided a calculation that resulted in two possible outcomes, one being infinite. Another speaker shared the key to this, which involved an identity for the delta function. This identity was then applied to the original equation, resulting in the correct answer.
  • #1
398
88
TL;DR Summary
How to calculate this integral?
It is from David Tong's note for QFT. The equation states
##\left . \int d^4 p \cdot \delta \left ( p^2_0 -{\vec p}^2 -m^2 \right ) \right | _{p_0>0} =\left . \int \frac {d^3 p} {2 p_0} \right |_{p_0=E_{\vec p}}##
where ##p## is a 4-vector ##p=\left ( p_0, \vec p \right )##.

In my calculation, I get
##\left . \int d^4 p \cdot \delta \left ( p^2_0 -{\vec p}^2 -m^2 \right ) \right | _{p_0>0} =\left . \int d^3 p \int d p_0 \cdot \delta \left ( p^2_0 -{\vec p}^2 -m^2 \right ) \right | _{p_0>0}=\left . \int d^3 p \cdot 1 \right | _{p_0>0}=1## or
##\left . \int d^4 p \cdot \delta \left ( p^2_0 -{\vec p}^2 -m^2 \right ) \right | _{p_0>0} =\left . \int d^3 p \int d p_0 \cdot \delta^{\left ( 3 \right )} \left ( p^2_0 -{\vec p}^2 -m^2 \right ) \delta ^{\left ( 1 \right )}\left ( p^2_0 -{\vec p}^2 -m^2 \right ) \right | _{p_0>0}=\left . \int d^3 p \cdot \delta^{\left ( 3 \right )} \left ( 0 \right ) \right | _{p_0>0}## which is infinite.

Maybe I get a wrong definition for the delta function in this integral? What is the dimension of the delta function in this integral?
 
Physics news on Phys.org
  • #2
The key to this is the identity
$$\delta \left(f(x)\right)=\frac{\delta(x-x_0)}{\left| f'(x_0)\right|}$$
where ##x_0## is a zero of f(x). In this case, ##f(x)=x^2 - x_0^2##, ##x=p_0##, and ##x_0=\sqrt{\vec{p}^2+m^2}=E_{\vec{p}}##. This gives me the correct answer.
 
  • #3
Isaac0427 said:
The key to this is the identity
$$\delta \left(f(x)\right)=\frac{\delta(x-x_0)}{\left| f'(x_0)\right|}$$
where ##x_0## is a zero of f(x). In this case, ##f(x)=x^2 - x_0^2##, ##x=p_0##, and ##x_0=\sqrt{\vec{p}^2+m^2}=E_{\vec{p}}##. This gives me the correct answer.
Oh, thanks, @Isaac0427 .
 

Suggested for: An integral with a delta-function

Replies
11
Views
1K
Replies
25
Views
233
Replies
6
Views
807
Replies
10
Views
154
Replies
4
Views
727
Back
Top