- #1
- 398
- 88
- TL;DR Summary
- How to calculate this integral?
It is from David Tong's note for QFT. The equation states
##\left . \int d^4 p \cdot \delta \left ( p^2_0 -{\vec p}^2 -m^2 \right ) \right | _{p_0>0} =\left . \int \frac {d^3 p} {2 p_0} \right |_{p_0=E_{\vec p}}##
where ##p## is a 4-vector ##p=\left ( p_0, \vec p \right )##.
In my calculation, I get
##\left . \int d^4 p \cdot \delta \left ( p^2_0 -{\vec p}^2 -m^2 \right ) \right | _{p_0>0} =\left . \int d^3 p \int d p_0 \cdot \delta \left ( p^2_0 -{\vec p}^2 -m^2 \right ) \right | _{p_0>0}=\left . \int d^3 p \cdot 1 \right | _{p_0>0}=1## or
##\left . \int d^4 p \cdot \delta \left ( p^2_0 -{\vec p}^2 -m^2 \right ) \right | _{p_0>0} =\left . \int d^3 p \int d p_0 \cdot \delta^{\left ( 3 \right )} \left ( p^2_0 -{\vec p}^2 -m^2 \right ) \delta ^{\left ( 1 \right )}\left ( p^2_0 -{\vec p}^2 -m^2 \right ) \right | _{p_0>0}=\left . \int d^3 p \cdot \delta^{\left ( 3 \right )} \left ( 0 \right ) \right | _{p_0>0}## which is infinite.
Maybe I get a wrong definition for the delta function in this integral? What is the dimension of the delta function in this integral?
##\left . \int d^4 p \cdot \delta \left ( p^2_0 -{\vec p}^2 -m^2 \right ) \right | _{p_0>0} =\left . \int \frac {d^3 p} {2 p_0} \right |_{p_0=E_{\vec p}}##
where ##p## is a 4-vector ##p=\left ( p_0, \vec p \right )##.
In my calculation, I get
##\left . \int d^4 p \cdot \delta \left ( p^2_0 -{\vec p}^2 -m^2 \right ) \right | _{p_0>0} =\left . \int d^3 p \int d p_0 \cdot \delta \left ( p^2_0 -{\vec p}^2 -m^2 \right ) \right | _{p_0>0}=\left . \int d^3 p \cdot 1 \right | _{p_0>0}=1## or
##\left . \int d^4 p \cdot \delta \left ( p^2_0 -{\vec p}^2 -m^2 \right ) \right | _{p_0>0} =\left . \int d^3 p \int d p_0 \cdot \delta^{\left ( 3 \right )} \left ( p^2_0 -{\vec p}^2 -m^2 \right ) \delta ^{\left ( 1 \right )}\left ( p^2_0 -{\vec p}^2 -m^2 \right ) \right | _{p_0>0}=\left . \int d^3 p \cdot \delta^{\left ( 3 \right )} \left ( 0 \right ) \right | _{p_0>0}## which is infinite.
Maybe I get a wrong definition for the delta function in this integral? What is the dimension of the delta function in this integral?