An interesting series - what does it converge to?

  • Context: Graduate 
  • Thread starter Thread starter kairama15
  • Start date Start date
  • Tags Tags
    Interesting Series
Click For Summary
SUMMARY

This discussion centers on the convergence of mathematical series, specifically the Leibniz formula for π and the Basel problem, which relates to the sum of the inverse squares equating to π²/6. The user expresses curiosity about the series sum of 1/n^n, which converges rapidly but lacks an exact known value. The conversation highlights the connection between these series and notable constants like π and e, emphasizing the beauty of their mathematical relationships.

PREREQUISITES
  • Understanding of infinite series and convergence
  • Familiarity with the Leibniz formula for π
  • Knowledge of the Basel problem and its significance
  • Basic calculus concepts, including Taylor and Maclaurin series
NEXT STEPS
  • Research the exact value of the series sum of 1/n^n and its proofs
  • Explore the geometric proof of the Basel problem by 3Blue1Brown
  • Study the properties and applications of the Maclaurin series
  • Investigate the Sophomore's dream and its implications in mathematics
USEFUL FOR

Mathematics students, educators, and enthusiasts interested in series convergence, mathematical constants, and advanced calculus concepts.

kairama15
Messages
31
Reaction score
0
I've lately been interested in series and how they converge to interesting values. It's always interesting to see how they end up adding up to something involving pi or e or some other unexpected solution.

I learned about the Leibniz formula back in college : pi/4 = 1/1-1/3+1/5-1/7+1/9-...
and discovered that it is simply the McLauren series for arctan(x) evaluated at 1. It's amazing that the odd integers are so involved in pi!

I've also been curious about the Basel problem involving:
pi^2/6 = 1/1^2+1/2^2+1/3^2+1/4^2+...
It's so cool that pi is still involved in the inverse squares. There is a beautiful geometric proof of this pi^2/6 result on youtube by "3Blue1Brown" called "why is pi here?". Really amazing to see how it all works out.

However, there is still one series that remains a mystery to me:
sum of 1/n^n from n=1 to n=infinity
or...
1/1^1+1/2^2+1/3^3+1/4^4+1/5^5+...
This series rapidly converges to a value according to wolfram alpha. But I was wondering if anyone knows the EXACT value rather than the approximation. And if there is a proof of it anywhere. Preferably understandable by an undergraduate math major. I'm curious - and i searched the internet for an hour trying to find something and can't find a thing!

Any help would be appreciated by you folks on this forum! :)
 
Physics news on Phys.org
\pi = 6 - \sum_{n=1}^{ \infty } \frac{1}{\left( n+ \frac{1}{2} \right)\left( n- \frac{1}{2} \right) } + \frac{1}{2\left( n+ \frac{1}{4} \right)\left( n- \frac{1}{4} \right) }

\phi = \sqrt{2+ \frac{1}{ \sqrt{2+ \frac{1}{ \sqrt{2+...} } } } }
 
Last edited by a moderator:
dromarand said:
[latex] \pi = 6 - \sum_{n=1}^{ \infty } \frac{1}{\left( n+ \frac{1}{2} \right)\left( n- \frac{1}{2} \right) } + \frac{1}{2\left( n+ \frac{1}{4} \right)\left( n- \frac{1}{4} \right) } [/latex]

[latex] \phi = \sqrt{2+ \frac{1}{ \sqrt{2+ \frac{1}{ \sqrt{2+...} } } } } [/latex]
Please use ##.## to tag, i.e., please wrap your code with ##'s.
 
##\pi = 6 - \sum_{n=1}^\infty \frac{1}{\left(n+\frac{1}{2}\right)\left(n-\frac{1}{2}\right)} + \frac{1}{2\left(n+\frac{1}{4}\right)\left(n-\frac{1}{4}\right)}##

##\phi = \sqrt{2+\frac{1}{\sqrt{2+\frac{1}{\sqrt{2+...}}}}}##
 
  • Like
Likes   Reactions: WWGD
WWGD said:
Please use ##.## to tag, i.e., please wrap your code with ##'s.
Corrected. Sometimes it is easier to hit the report button. It's less noisy.

This thread is several years old. It was never meant to sample series and their limits. Please create a new thread if you want to do so and choose a descriptive title.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
3
Views
1K