1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Analysis. Function spaces/Contraction mappings

  1. Feb 5, 2009 #1
    1. The problem statement, all variables and given/known data

    Let K: [0,1] x [0,1] -> R be a continuous function such that K(x,y) > 0 and the integral K(x,y) dy <= C < 1 (from 0 to 1) for all x within [0,1].

    Let g:[0,1] -> R be any continuous Function. Show that there is a unique continuous function f:[0,1] -> R such that f(x)= g(x) + integral K(x,y) dy


    3. The attempt at a solution

    I know that we are given 2 functions and that we need to input those into the formula. We want to see the output is closer than the input by a factor of k, but I'm not sure what it is that I should be doing.

    To show uniqueness, I say to let g(f(x)) = h(x). Which means we are sending [0,1] -> R to [0,1] -> R, but I don't think that's right...

    Thanks in advance!
     
  2. jcsd
  3. Feb 5, 2009 #2

    quasar987

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Did you make a typo in the question? Because the unique continuous function f such that f(x)= g(x) + integral K(x,y) dy is the function f defined by f(x):=f(x)= g(x) + integral K(x,y) dy
     
  4. Feb 6, 2009 #3

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    I suspect you mean
    [tex]f(x)= g(x)+ \int K(x,y) f(y) dy[/itex]
    That's a variation of the Poisson proof of the existance and uniqueness of solutions to first order differential equations. Are you allowed to use the Banach fixed point theorem? (If f(x) is a contraction map then there is a unique x such that f(x)= x.)


     
  5. Feb 6, 2009 #4

    quasar987

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Probably he is allowed to use Banach's fixed point theorem because of the title of the thread.

    The question as to whether Banach's fixed point theorem can be applied to this situation amounts to finding
    (1) a complete metric space inhabited by continuous maps from [0,1] to R
    (2) a contraction F on the above space such that [F(f)](x)=g(x) + integral K(x,y)f(y) dy
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook