Physicsissuef
- 908
- 0
The formula of angle between two lines in space is:
\vec{a}=(a_1,a_2,a_3) ; \vec{b}=(b_1,b_2,b_3)
cos\alpha=\frac{|\vec{a} \vec{b}|}{|\vec{a}||\vec{b}|}
or out from there:
cos\alpha=\frac{|a_1b_1+a_2b_2+a_3b_3|}{\sqrt{a_1^2+a_2^2+a_3^2}\sqrt{b_1^2+b_2^2+b_3^2}}
Why it is |\vec{a}\vec{b}|? Why not \vec{a} \vec{b}?
Scalar product of two vectors is \vec{a}\vec{b}=|\vec{a}||\vec{b}|cos(\vec{a},\vec{b})
\vec{a}=(a_1,a_2,a_3) ; \vec{b}=(b_1,b_2,b_3)
cos\alpha=\frac{|\vec{a} \vec{b}|}{|\vec{a}||\vec{b}|}
or out from there:
cos\alpha=\frac{|a_1b_1+a_2b_2+a_3b_3|}{\sqrt{a_1^2+a_2^2+a_3^2}\sqrt{b_1^2+b_2^2+b_3^2}}
Why it is |\vec{a}\vec{b}|? Why not \vec{a} \vec{b}?
Scalar product of two vectors is \vec{a}\vec{b}=|\vec{a}||\vec{b}|cos(\vec{a},\vec{b})
Last edited: