Angular momentum of a disk about an axis parallel to center of mass axis

Click For Summary

Homework Help Overview

The discussion revolves around the angular momentum of a disk about an axis parallel to its center of mass axis. Participants are exploring the relationships between angular momentum, angular velocity, and the geometry of the disk's rotation.

Discussion Character

  • Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • The original poster attempts to relate the angular momentum about point A to that about the center of mass, questioning the correctness of their conclusion. Other participants confirm this relationship and explore the implications for angular velocity.

Discussion Status

Participants are engaged in clarifying the relationships between angular momentum and angular velocity. Some have provided supportive confirmations of the original poster's reasoning, while others are examining the conditions under which angular velocities at different points may differ.

Contextual Notes

There is a focus on the geometric relationships and assumptions regarding the angles formed by lines from the center of mass to points on the disk, as well as the implications of distance between points A and C on angular velocity.

vcsharp2003
Messages
913
Reaction score
179
Homework Statement
A uniform disk of mass M and radius R is rotating at an angular velocity of ##\omega## about it's center C. What is the angular momentum of the disk about an axis passing through A and perpendicular to the plane of disk.
Relevant Equations
##I_c=\frac {MR^2} {2}##
##\vec L = I \vec {\omega}##
I am using the following formula to solve this problem.
$$ L_a= L_c + \text { (angular momentum of a particle at C of mass M)}$$
Because the point C is at rest relative to point A, so the second term in RHS of above equation is zero. Hence, the angular momentum about A is same as angular momentum about it's center of mass C.

$$\therefore L_a = \frac{MR^2}{2} ~ \omega$$.

I am not sure if above conclusion is correct.

IMG_20220601_175235__01.jpg
 
Physics news on Phys.org
It is correct. You can show formally that the angular momentum of an object about an arbitrary point P is the angular momentum about the object's center of mass plus the angular momentum of the center mass about point P. Here, the latter term is zero as you noted.
 
  • Like
Likes   Reactions: vcsharp2003
kuruman said:
It is correct. You can show formally that the angular momentum of an object about an arbitrary point P is the angular momentum about the object's center of mass plus the angular momentum of the center mass about point P. Here, the latter term is zero as you noted.
Since ##L = I \omega##, can we say that the angular velocity of the disk about A axis is same as the angular velocity about it's C axis i.e. ##\omega_{a} = \omega##?
 
vcsharp2003 said:
Since ##L = I \omega##, can we say that the angular velocity of the disk about A axis is same as the angular velocity about it's C axis i.e. ##\omega_{a} = \omega##?
The angular velocity is the range of change of angle with respect to time. In this case consider angle
##\theta## formed by a reference line, say along the horizontal and the line from C to a point P on the disk that rotates with it. Then you can say that ##\omega_0=\frac{d\theta}{dt}##. Now draw a line from A to P. That line forms angle ##\phi## relative to the horizontal and the angular velocity of P (not of the disk) will be ##\omega=\frac{d\phi}{dt}##. You have to show that ##\omega=\omega_0## for any point P on the disk.
 
  • Like
Likes   Reactions: vcsharp2003
kuruman said:
The angular velocity is the range of change of angle with respect to time. In this case consider angle
##\theta## formed by a reference line, say along the horizontal and the line from C to a point P on the disk that rotates with it. Then you can say that ##\omega_0=\frac{d\theta}{dt}##. Now draw a line from A to P. That line forms angle ##\phi## relative to the horizontal and the angular velocity of P (not of the disk) will be ##\omega=\frac{d\phi}{dt}##. You have to show that ##\omega=\omega_0## for any point P on the disk.
In general, the angle ##\theta## and ##\phi## will not be equal, so the two angular velocities would have different magnitudes.
 
vcsharp2003 said:
In general, the angle ##\theta## and ##\phi## will not be equal, so the two angular velocities would have different magnitudes.
Yes. You can see that as the distance between A and C becomes larger, the change of angle ##\phi## with respect to time will become smaller.
 
  • Like
Likes   Reactions: vcsharp2003

Similar threads

Replies
67
Views
4K
Replies
5
Views
1K
Replies
335
Views
16K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 45 ·
2
Replies
45
Views
4K
Replies
9
Views
3K
  • · Replies 71 ·
3
Replies
71
Views
4K
Replies
10
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K