Angular momentum of a disk about an axis parallel to center of mass axis

Click For Summary
The discussion focuses on the calculation of angular momentum for a disk about an axis parallel to its center of mass. The formula used indicates that the angular momentum about point A is equivalent to that about the center of mass C due to the latter's rest state relative to A. It is confirmed that the angular velocity about point A is not necessarily the same as that about point C, as the angles formed by their respective reference lines differ. The relationship between the angles suggests that as the distance between points A and C increases, the angular velocity at point A decreases. Overall, the calculations and relationships presented are validated within the context of angular momentum principles.
vcsharp2003
Messages
913
Reaction score
179
Homework Statement
A uniform disk of mass M and radius R is rotating at an angular velocity of ##\omega## about it's center C. What is the angular momentum of the disk about an axis passing through A and perpendicular to the plane of disk.
Relevant Equations
##I_c=\frac {MR^2} {2}##
##\vec L = I \vec {\omega}##
I am using the following formula to solve this problem.
$$ L_a= L_c + \text { (angular momentum of a particle at C of mass M)}$$
Because the point C is at rest relative to point A, so the second term in RHS of above equation is zero. Hence, the angular momentum about A is same as angular momentum about it's center of mass C.

$$\therefore L_a = \frac{MR^2}{2} ~ \omega$$.

I am not sure if above conclusion is correct.

IMG_20220601_175235__01.jpg
 
Physics news on Phys.org
It is correct. You can show formally that the angular momentum of an object about an arbitrary point P is the angular momentum about the object's center of mass plus the angular momentum of the center mass about point P. Here, the latter term is zero as you noted.
 
  • Like
Likes vcsharp2003
kuruman said:
It is correct. You can show formally that the angular momentum of an object about an arbitrary point P is the angular momentum about the object's center of mass plus the angular momentum of the center mass about point P. Here, the latter term is zero as you noted.
Since ##L = I \omega##, can we say that the angular velocity of the disk about A axis is same as the angular velocity about it's C axis i.e. ##\omega_{a} = \omega##?
 
vcsharp2003 said:
Since ##L = I \omega##, can we say that the angular velocity of the disk about A axis is same as the angular velocity about it's C axis i.e. ##\omega_{a} = \omega##?
The angular velocity is the range of change of angle with respect to time. In this case consider angle
##\theta## formed by a reference line, say along the horizontal and the line from C to a point P on the disk that rotates with it. Then you can say that ##\omega_0=\frac{d\theta}{dt}##. Now draw a line from A to P. That line forms angle ##\phi## relative to the horizontal and the angular velocity of P (not of the disk) will be ##\omega=\frac{d\phi}{dt}##. You have to show that ##\omega=\omega_0## for any point P on the disk.
 
  • Like
Likes vcsharp2003
kuruman said:
The angular velocity is the range of change of angle with respect to time. In this case consider angle
##\theta## formed by a reference line, say along the horizontal and the line from C to a point P on the disk that rotates with it. Then you can say that ##\omega_0=\frac{d\theta}{dt}##. Now draw a line from A to P. That line forms angle ##\phi## relative to the horizontal and the angular velocity of P (not of the disk) will be ##\omega=\frac{d\phi}{dt}##. You have to show that ##\omega=\omega_0## for any point P on the disk.
In general, the angle ##\theta## and ##\phi## will not be equal, so the two angular velocities would have different magnitudes.
 
vcsharp2003 said:
In general, the angle ##\theta## and ##\phi## will not be equal, so the two angular velocities would have different magnitudes.
Yes. You can see that as the distance between A and C becomes larger, the change of angle ##\phi## with respect to time will become smaller.
 
  • Like
Likes vcsharp2003
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

Replies
67
Views
4K
Replies
5
Views
1K
Replies
335
Views
15K
  • · Replies 17 ·
Replies
17
Views
705
  • · Replies 45 ·
2
Replies
45
Views
4K
Replies
9
Views
2K
  • · Replies 71 ·
3
Replies
71
Views
3K
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K