Bernard
- 11
- 0
I am reading a proof of why
\left[ \hat{L}_x, \hat{L}_y \right ] = i \hbar \hat{L}_z
Given a wavefunction \psi,
\hat{L}_x, \hat{L}_y \psi = \left( -i\hbar \right)^2 \left( y \frac{\partial}{\partial z} - z \frac {\partial}{\partial y} \right ) \left (z \frac{\partial \psi}{\partial x} - x \frac{\partial \psi}{\partial z } \right )
= -\hbar ^2 \left ( yz \frac{\partial ^2 \psi}{\partial z \partial x} + y \frac{\partial \psi}{\partial x} - yx \frac{\partial ^2 \psi}{\partial z^2} - z^2 \frac{\partial ^2 \psi}{\partial y \partial x} + zx \frac{\partial ^2 \psi}{\partial y \partial z} \right )
This is a simple expansion of the brackets. I don't understand however, where the second term in the brackets of the last equation comes from?
\left[ \hat{L}_x, \hat{L}_y \right ] = i \hbar \hat{L}_z
Given a wavefunction \psi,
\hat{L}_x, \hat{L}_y \psi = \left( -i\hbar \right)^2 \left( y \frac{\partial}{\partial z} - z \frac {\partial}{\partial y} \right ) \left (z \frac{\partial \psi}{\partial x} - x \frac{\partial \psi}{\partial z } \right )
= -\hbar ^2 \left ( yz \frac{\partial ^2 \psi}{\partial z \partial x} + y \frac{\partial \psi}{\partial x} - yx \frac{\partial ^2 \psi}{\partial z^2} - z^2 \frac{\partial ^2 \psi}{\partial y \partial x} + zx \frac{\partial ^2 \psi}{\partial y \partial z} \right )
This is a simple expansion of the brackets. I don't understand however, where the second term in the brackets of the last equation comes from?
Last edited: