A Another great mathematical problem: Quadrisection of a disc

  • A
  • Thread starter Thread starter Anixx
  • Start date Start date
  • Tags Tags
    Geometric
Anixx
Messages
88
Reaction score
11
Along with the problem of squaring a circle and trisection of an angle, there is one more great problem: quarisection of a disc.

You have a disk and have to dissect it into four parts of equal area with three chords coming from the same point on the disc's boundary (one of these chords is a diameter).

What makes this problem impossible to solve with straightedge and compass?
 
Last edited:
Mathematics news on Phys.org
"quadrisection", for those of us who have to Google the problem. :wink:
 
  • Like
Likes topsquark and weirdoguy
Try Gptchat.
 
  • Haha
Likes DaveC426913
Anixx said:
Along with the problem of squaring a circle and trisection of an angle, there is one more great problem: quarisection of a disc.

You have a disk and have to dissect it into four parts of equal area with three chords coming from the same point on the disc's boundary (one of these chords is a diameter).

What makes this problem impossible to solve with straightedge and compass?
In order to do this, you have to solve
1689717515785.png

$$
A= \dfrac{ \pi r^2}{4}= \dfrac{r^2}{2}(\alpha -\sin(\alpha)) \Longleftrightarrow \dfrac{\pi}{2}=\alpha -\sin(\alpha)
$$
which is something like ##\alpha \approx 2.31## and this number is nowhere even near a Galois extension of degree ##2^n.##
 
  • Like
  • Informative
Likes dextercioby, Anixx and berkeman
fresh_42 said:
In order to do this, you have to solve
View attachment 329405
$$
A= \dfrac{ \pi r^2}{4}= \dfrac{r^2}{2}(\alpha -\sin(\alpha)) \Longleftrightarrow \dfrac{\pi}{2}=\alpha -\sin(\alpha)
$$
which is something like ##\alpha \approx 2.31## and this number is nowhere even near a Galois extension of degree ##2^n.##
If we have a straightangle, compass and an angle of Dottie number available, can we divide a disk into arbitrary number of parts of equal area with chords?

What if we have only interval of Dottie number and no angle?
 
Things become completely different if additional tools can be used. IIRC then trisection becomes solvable with the help of an Archimedean spiral.

I don't know anything about the problem here with any auxiliary weapons. However, solving the equation for ##\alpha## looks rather difficult, even with additional tools. ##\alpha - \sin(\alpha)## is very inconvenient.
 
Last edited:
  • Like
Likes dextercioby
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top