A Another great mathematical problem: Quadrisection of a disc

  • Thread starter Thread starter Anixx
  • Start date Start date
  • Tags Tags
    Geometric
Click For Summary
The quadrisection of a disc involves dividing a disc into four equal-area parts using three chords from a single boundary point, one being a diameter. This problem is deemed impossible to solve with just a straightedge and compass due to the complexity of the equation involved, specifically the relationship between the angle α and the sine function. The equation requires solving for α in a manner that does not yield a Galois extension of degree 2^n, indicating its unsolvability with traditional methods. The discussion also explores the potential for using additional tools, such as the Dottie number, which could change the solvability of the problem. Overall, the quadrisection of a disc remains a challenging mathematical conundrum.
Anixx
Messages
88
Reaction score
11
Along with the problem of squaring a circle and trisection of an angle, there is one more great problem: quarisection of a disc.

You have a disk and have to dissect it into four parts of equal area with three chords coming from the same point on the disc's boundary (one of these chords is a diameter).

What makes this problem impossible to solve with straightedge and compass?
 
Last edited:
Mathematics news on Phys.org
"quadrisection", for those of us who have to Google the problem. :wink:
 
  • Like
Likes topsquark and weirdoguy
Try Gptchat.
 
  • Haha
Likes DaveC426913
Anixx said:
Along with the problem of squaring a circle and trisection of an angle, there is one more great problem: quarisection of a disc.

You have a disk and have to dissect it into four parts of equal area with three chords coming from the same point on the disc's boundary (one of these chords is a diameter).

What makes this problem impossible to solve with straightedge and compass?
In order to do this, you have to solve
1689717515785.png

$$
A= \dfrac{ \pi r^2}{4}= \dfrac{r^2}{2}(\alpha -\sin(\alpha)) \Longleftrightarrow \dfrac{\pi}{2}=\alpha -\sin(\alpha)
$$
which is something like ##\alpha \approx 2.31## and this number is nowhere even near a Galois extension of degree ##2^n.##
 
  • Like
  • Informative
Likes dextercioby, Anixx and berkeman
fresh_42 said:
In order to do this, you have to solve
View attachment 329405
$$
A= \dfrac{ \pi r^2}{4}= \dfrac{r^2}{2}(\alpha -\sin(\alpha)) \Longleftrightarrow \dfrac{\pi}{2}=\alpha -\sin(\alpha)
$$
which is something like ##\alpha \approx 2.31## and this number is nowhere even near a Galois extension of degree ##2^n.##
If we have a straightangle, compass and an angle of Dottie number available, can we divide a disk into arbitrary number of parts of equal area with chords?

What if we have only interval of Dottie number and no angle?
 
Things become completely different if additional tools can be used. IIRC then trisection becomes solvable with the help of an Archimedean spiral.

I don't know anything about the problem here with any auxiliary weapons. However, solving the equation for ##\alpha## looks rather difficult, even with additional tools. ##\alpha - \sin(\alpha)## is very inconvenient.
 
Last edited:
  • Like
Likes dextercioby

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
Replies
13
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
Replies
1
Views
2K
  • · Replies 28 ·
Replies
28
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K