Apostol in his "Mathematica Analysis" defines something called a "component interval". However, I cannot find it anywhere on google or in other books I have on analysis, and I really would like to see a picture of what he means..(adsbygoogle = window.adsbygoogle || []).push({});

Apostol's definition is that the component interval of an open subset S of R^{1}is an open interval I such that I[itex]\subseteq[/itex]S and such that no open interval J≠I exists such that I[itex]\subseteq[/itex]J[itex]\subseteq[/itex]S

In other words, a component interval of S is not a proper subset of any other open interval in S.

So does this mean basically that if we cut up R^{1}into disjoint open intervals and define their union as S, then a component interval I will be the any one of those disjoint open intervals such that I spans the whole of one such disjoint open interval?

I attached to this post an image i drew in Paint of how I visually see component intervals. If someone could please look on it and tell me if i am correct i would be grateful

**Physics Forums - The Fusion of Science and Community**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Apostol definition of component interval

Loading...

Similar Threads - Apostol definition component | Date |
---|---|

I The two equivalent parallel velocity vectors | Aug 17, 2016 |

I Need help understanding text from 'Calculus' by Apostol | May 1, 2016 |

Method of Exhuastion for the area of a parabolic segment | Sep 5, 2015 |

Clarification on a topic in Apostol's calculus text | Mar 27, 2015 |

Apostol definition of interior point and open set | Nov 4, 2011 |

**Physics Forums - The Fusion of Science and Community**