Approximations in Chemical Equilibrium (add a weak acid HA into pure water)

Click For Summary

Discussion Overview

The discussion revolves around the behavior of a weak acid (HA) when added to pure water, focusing on the equilibria established in the system and the implications of initial concentrations of hydronium and hydroxide ions due to water's autoionization. Participants explore the mathematical modeling of these equilibria, including the derivation of cubic equations and the potential for simplifications in calculations.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant outlines the equilibria involving the weak acid HA and the autoionization of water, presenting expressions for equilibrium constants and discussing the implications of initial concentrations of H3O+ and OH.
  • Another participant suggests that initial concentrations are often disregarded in equilibrium calculations, emphasizing the importance of total concentrations and mass balances instead.
  • A participant questions the validity of neglecting the r3 term in the cubic equations derived, expressing concern about whether r must always be less than a and if this assumption affects the results.
  • There is a request for clarification on how to simplify the cubic equations to arrive at common results, such as p = √(cKa), indicating a need for understanding the mathematical techniques involved.
  • A later reply introduces the "5% rule" as a method for simplifying calculations when one component is significantly smaller than another, which may lead to a reduction in the degree of the resulting polynomial.

Areas of Agreement / Disagreement

Participants express differing views on the treatment of initial concentrations in equilibrium calculations, with some advocating for their inclusion and others suggesting they can be neglected. The discussion remains unresolved regarding the implications of neglecting certain terms in the equations and the validity of the assumptions made.

Contextual Notes

There are limitations in the assumptions made regarding the concentrations of H3O+ and OH ions, as well as the conditions under which the r3 term can be neglected. The discussion highlights the complexity of deriving equilibrium expressions and the potential for different approaches to yield varying results.

SilverSoldier
Messages
26
Reaction score
3
Suppose we add a weak acid HA into pure water, so that upon addition its initial concentration is c. The following equilibria should establish in the system. $$\text{HA}+\text{H}_2\text{O}\rightleftharpoons\text{H}_3\text{O}^++\text{A}^-$$ $$2\text{H}_2\text{O}\rightleftharpoons\text{H}_3\text{O}^++\text{OH}^−$$ Let ##K_a## and ##K_w## respectively be the equilibrium constants for these processes. We can express the composition of the system before and after equilibrium as follows. Let ##a## be the concentration of ##\text{H}_3\text{O}^+## and ##\text{OH}^−## already present in the system due to the autoionization of water initially; i.e., ##a=\sqrt{K_w}##.

##\text{HA}##​
##\text{H}_3\text{O}^+##​
##\text{A}^-##​
Initial concentration
##c##​
##a##​
-​
Change in concentration
##-p##​
##+p##​
##+p##​
Equilibrium concentration
##c-p##​
##a+p+q##​
##p##​

##\text{H}_2\text{O}##​
##\text{H}_3\text{O}^+##​
##\text{OH}^−##​
Initial concentration
-​
##a##​
##a##​
Change in concentration
-​
##+q##​
##+q##​
Equilibrium concentration
-​
##a+p+q##​
##a+q##​

Thus, we can obtain the following expressions at equilibrium. $$K_w=\left(a+p+q\right)\left(a+q\right)$$ $$K_a=\dfrac{\left(a+p+q\right)\left(p\right)}{c-p}$$ Taking ##r=a+q##, we obtain the following cubic equations in ##p## and ##r##. $$p^3K_a+p^2\left(K_a^2−K_w−cK_a\right)−2pcK_a^2+c^2K_a^2=0$$ $$r^3K_a+r^2\left(cK_a+K_w\right)−rK_aK_w−K_w^2=0$$ Now, as the acid begins to dissociate, because there is ##\text{H}_3\text{O}^+## already present in the system, the reverse "association" process should start off faster, so it should take lesser time for its rate to increase up to a significant value bringing the system to equilibrium, allowing time only for fewer molecules of the acid to dissociate.

At the same time, because ##\text{H}_3\text{O}^+## is being "removed" by the reverse autoionization process as it forms, the system should be trying to keep the ##\text{H}_3\text{O}^+## concentration below whatever value it would otherwise have risen to in the absence of autoionization.

The fact that the reverse autoionization process is triggered as the reaction proceeds should mean that ##\text{OH}^-## ions in the system should be being consumed, so by the time equilibrium is attained, its concentration must be lesser than the initial value. This means that ##r## in the equation above must be less than ##a##, so if ##a## can be considered small, then ##r^3## must be even smaller, and the effect of the ##r^3## term in the equation should be negligible. It should therefore be possible the reduce it to $$r^2\left(cK_a+K_w\right)−rK_aK_w−K_w^2=0$$ The following is a plot I made of the above equations with the ##x## axis representing ##c## and ##y## axis representing ##r##. The ##r^3## term is neglected in the orange curve, and not neglected in the black curve (##K_a=5## and ##K_w=0.5## here).

geogebra-export.png

The orange curve greatly deviates from the black curve for small concentrations. Is this possible, because ##r## must always be less than ##a## for all concentrations? Have I made an error somewhere? Is it wrong to neglect the ##r^3## term?

By the way, I have not seen calculations being made taking the ##\text{H}_3\text{O}^+## and ##\text{OH}^-## concentrations already present in the system initially into consideration. Where the autoionization of water is not neglected it is always assumed that there are no ##\text{H}_3\text{O}^+## and ##\text{OH}^-## ions present in the system before equilibrium. Why is this? Is there anything wrong with saying it is already present?
 
Last edited:
Chemistry news on Phys.org
In general when systematically finding equilibrium nobody cares about initial concentrations of anything. Total (analytical) concentrations and mass balances are all that matters (apart from Ka/Kb and charge balance).

For nitpickers one of the mass balances should be that of water itself, but it makes the calculations a bit more difficult, as it forces the solver into mass balances of elements, not of substances. The most general equilibirum programs do that, those specialized for pH calculations don't, as it is enough to add Kw to make sure autoionization of water is part of the system.

While you approach - starting with ICE tables - should in principle produce the same results, I have never seen it used that way. The general approach is actually simpler and easier to use.
 
  • Informative
Likes   Reactions: BillTre and berkeman
Borek said:
In general when systematically finding equilibrium nobody cares about initial concentrations of anything. Total (analytical) concentrations and mass balances are all that matters (apart from Ka/Kb and charge balance).

For nitpickers one of the mass balances should be that of water itself, but it makes the calculations a bit more difficult, as it forces the solver into mass balances of elements, not of substances. The most general equilibirum programs do that, those specialized for pH calculations don't, as it is enough to add Kw to make sure autoionization of water is part of the system.

While you approach - starting with ICE tables - should in principle produce the same results, I have never seen it used that way. The general approach is actually simpler and easier to use.
How are we able to simplify the above cubics to simpler equations that can be solved? How do we, for example, simplify the cubic in ##p## to obtain the usual result that ##p=\sqrt{cK_a}##?
 
Look here for a review of methods used: https://www.chembuddy.com/?left=pH-calculation&right=toc

Broadly speaking the main idea is the "5% rule" - if in a sum x+y one component (say y) is less than 5% of the other we try to ignore it and assume x+y≈x. That typically decreases the degree of the resulting polynomial.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K