I Are All Periodic Lattice Arrangements Bravais Lattices?

Click For Summary
All naturally occurring crystals with a periodic arrangement of lattice points can be classified as Bravais lattices, which exhibit translational symmetry. There are 5 distinct Bravais lattices in two dimensions and 14 in three dimensions due to the constraints of symmetry and periodicity. Each crystal has a unique lattice that corresponds to one of these Bravais types. The concept of periodic arrangements allows for flexibility in defining unit cells, but ultimately, the lattice is uniquely determined by the translationally equivalent points. Understanding these principles is essential for comprehending the structure of crystalline materials.
Slimy0233
Messages
167
Reaction score
48
or Are all naturally occurring crystals with periodic arrangement of lattices Bravais lattices?

From two days, I have been trying to understand Bravais lattices and what it's importance is and after a lot of research, I came to know that they are a periodic arrangement of lattice points with translational symmetry. Now, I want to write notes and I don't know why there are only 5 Bravais lattices in 2d and 14 in 3d (like WHY?) and I am of the believe that the actual derivation is pretty hard and unnecessary. Now, I have one doubt, Can all possible periodic arrangements of lattices be arranged as a Bravais lattice?

Because if they are, I can finally stop looking for answer and write, it has been observed that all possible periodic lattice arrangements can be expressed as Bravais lattices and close the chapter on this on and move on to the next topic.

Also, I believe this 10 year answer is right, but I just wanted to ask you all with the context I am in.
 
Last edited by a moderator:
Physics news on Phys.org
What the heck is a periodic arrangement of lattices?
Crystals are a periodic repetition of some motiv. Due to periodicity, there is some flexibility in defining where one motiv ends and the next one begins, hence the different types of elementary cells. However, if you chose one point of the motiv and take all vectors to the translationally equivalent points in other motivs, these vectors define the lattice (uniquely). There is only one lattice for a crystal and this lattice will belong to 1 of the 14 Bravais types.
 
  • Like
Likes Slimy0233 and hutchphd
DrDu said:
What the heck is a periodic arrangement of lattices?
Crystals are a periodic repetition of some motiv. Due to periodicity, there is some flexibility in defining where one motiv ends and the next one begins, hence the different types of elementary cells. However, if you chose one point of the motiv and take all vectors to the translationally equivalent points in other motivs, these vectors define the lattice (uniquely). There is only one lattice for a crystal and this lattice will belong to 1 of the 14 Bravais types.
> What the heck is a periodic arrangement of lattices?

I am sorry, I meant, periodic arrangement of lattice points.
 
A relative asked me about the following article: Experimental observation of a time rondeau crystal https://www.nature.com/articles/s41567-025-03028-y I pointed my relative to following article: Scientists Discovered a Time Crystal That Reveals a New Way to Order Time https://www.yahoo.com/news/articles/scientists-discovered-time-crystal-reveals-180055389.html This area is outside of my regular experience. I'm interested in radiation effects in polycrystalline material, i.e., grain...

Similar threads

  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 18 ·
Replies
18
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
5K
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
993
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K
  • · Replies 20 ·
Replies
20
Views
7K