Left invariant fields on a group G satisfies a lie algebra; say we have an n-dimensional Lie algebra for which the fields ##{X_1, \ldots , X_n}## is a basis. Let these satisfy the algebra ##[X_a, X_b] = c_{ab}^c X_c##. Suppose now that we have a Riemannian manifold with killing vectors ##{\xi_1,\ldots, \xi_n}## and let they satisfy the same algebra ##[\xi_a, \xi_b] = c_{ab}^c \xi_c##. Let ##p \in M## and the action of the group G on M be denoted ##g \cdot p##. Then we have the map ##F: TG \to TM## given by(adsbygoogle = window.adsbygoogle || []).push({});

$$X_a \mapsto X_a^{*} := \left. \frac{d}{dt}\right|_{t = 0} e^{t X_a} \cdot p.$$

Is ##X_a^{*}## identical to the killing field ##\xi_a##? If so, how does one prove it?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Are left-invariant fields mapped onto the manifold Killing vectors?

**Physics Forums | Science Articles, Homework Help, Discussion**