Are There a Finite Number of Solutions to $f(x) = y$ in a Bounded Region?

  • Context: Undergrad 
  • Thread starter Thread starter Euge
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on the mathematical proof that for a differentiable function \( f : \mathbb{R}^n \to \mathbb{R}^m \) with a constant rank derivative \( Df \), there exists a finite number of solutions to the equation \( f(x) = y \) within a bounded region \( \Omega \subset \mathbb{R}^n \). GJA has provided a valid proof for the case when \( f \) is smooth, while another participant has contributed a solution applicable to general differentiable functions. This establishes a clear relationship between the properties of the function and the boundedness of the region in determining the number of solutions.

PREREQUISITES
  • Understanding of differentiable functions and their properties
  • Knowledge of the concept of constant rank in derivatives
  • Familiarity with the topology of bounded regions in \( \mathbb{R}^n \)
  • Basic principles of mathematical proof techniques
NEXT STEPS
  • Study the implications of the constant rank theorem in differential topology
  • Explore the properties of smooth functions and their derivatives
  • Investigate the relationship between bounded regions and solution sets in multivariable calculus
  • Examine advanced proof techniques in real analysis
USEFUL FOR

Mathematicians, students of advanced calculus, and researchers in differential topology who are interested in the behavior of solutions to multivariable equations within bounded domains.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's problem!

-----
Suppose $f : \Bbb R^n \to \Bbb R^m$ is a differentiable function such that the derivative $Df$ has constant rank $n$. If $\Omega \subset \Bbb R^n$ is bounded, prove that to every $y\in \Bbb R^m$ there corresponds only finitely many solutions to the equation $f(x) = y$ in $\Omega$.
-----

 
Physics news on Phys.org
GJA has provided a correct proof in the case $f$ is smooth. You can read his solution below.

Suppose there are infinitely many solutions to $f(x)=y$ in $\Omega$. From this collection of infinite solutions, select a sequence $\{x_{n}\}$ of distinct points, noting that $x_{n}\in\Omega$ and $f(x_{n}) = y$ for all $n$.

Since $\Omega$ is a bounded subset of $\mathbb{R}^{n}$, $\text{cl}(\Omega)$ is compact by the Heine-Borel theorem. According to the Bolzano-Weierstrass theorem, $\text{cl}(\Omega)$ is sequentially compact. Hence, $\{x_{n}\}$ admits a convergent subsequence whose limit, say $x$, is in $\text{cl}(\Omega)$. For ease of notation, we denote the convergent subsequence by $\{x_{n}\}$, as the original sequence is no longer needed.

Since $Df$ has constant rank at $x$, the Constant Rank theorem says that there is a diffeomorphism $G$ defined on a neighborhood, say $U$, of $x$ sending $x$ to the origin of $\mathbb{R}^{n}$, and a diffeomorphism $F$ defined on a neighborhood of $f(x) = y$ sending $y$ to the origin of $\mathbb{R}^{m}$ such that $$(F\circ f\circ G^{-1})(x^{1},\ldots, x^{n}) = (x^{1},\ldots, x^{n}, \underbrace{0,\ldots, 0}_{m-n})\qquad (*)$$ Since the sequence of points we chose from the outset are distinct, since $U$ is a neighborhood of $x$, and since $x_{n}\rightarrow x$, there exists $N$ such that $x_{N}\in U$ and $x_{N}\neq x$. Since $x_{N}\neq x$ and since the diffeomorphism $G$ maps $x$ to the origin, we know $G(x_{N})\neq (\underbrace{0,\ldots, 0}_{n})$. Let $(p^{1}, \ldots, p^{n})$ be such that $x_{N} = G^{-1}(p^{1},\ldots, p^{n})$ and note that $(p^{1},\ldots, p^{n})\neq (\underbrace{0,\ldots, 0}_{n})$, as the previous sentence implies.

According to $(*)$, $$(F\circ f\circ G^{-1})(p^{1},\ldots, p^{n}) = (p^{1},\ldots, p^{n}, \underbrace{0,\ldots, 0}_{m-n})\neq (\underbrace{0,\ldots, 0}_{m})\qquad(**),$$ where the $\neq$ follows because $(p^{1},\ldots, p^{n})\neq (\underbrace{0,\ldots, 0}_{n})$.

However, we now have a contradiction because we know $f(x_{N})=y$ and that $F(y) = 0$. Thus, $$(F\circ f\circ G^{-1})(p^{1},\ldots, p^{n}) = (F\circ f)(x_{N}) = F(y) = (\underbrace{0,\ldots, 0}_{m}),$$ contradicting $(**)$.

For general differentiable $f$, you can read my solution below.

Fix $y\in \mathbb{R}^m$, and set $\Sigma = \{x\in \mathbb{R}^n : f(x) = y\}$. Given $a\in \Sigma$, $Df(a)$ is an injective linear map (since $Df(a)$ has rank $n$); thus, there is a linear map $L : \mathbb{R}^m\to \mathbb{R}^n$ such that $L\circ Df(a) = \text{id}$. Since $f$ is differentiable at $a$, there is an open neighborhood $U$ of $a$ such that for all $x\in U$, $|f(x) - y - Df(x)(x - a)| < \frac{1}{2\|L\|}|x - a|$. Hence if $x\in U$, $$|f(x) - y| \ge |Df(x)(x - a)| - |f(x) - y - Df(x)(x - a)| > \frac{1}{\|L\|}|x - a| - \frac{1}{2\|L\|}|x - a| = \frac{1}{2\|L\|}|x - a|$$ In particular, $U \cap \Sigma = \{a\}$. Since $a$ was arbitrary, $\Sigma$ is discrete.

Let $X = \Sigma \cap \overline{\Omega}$. Continuity of $f$ implies $\Sigma$ is closed; thus, $X$ is closed. Boundedness of $\Omega$ forces boundedness of $X$.. By the Heine-Borel theorem, $X$ is compact. As compact discrete sets are finite, $X$ is finite. Hence $\Sigma \cap \Omega$ is finite, as desired.
 

Similar threads

Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K