Are these semidirect products of groups isomorphic?

Click For Summary

Homework Help Overview

The discussion revolves around the isomorphism of two semidirect products of groups, specifically ##G(1)=(C_3\times C_3)\rtimes_{h_1}C_2## and ##G(2)=(C_3\times C_3)\rtimes_{h_2}C_2##, where ##C_3## and ##C_2## are cyclic groups of orders 3 and 2, respectively. Participants are analyzing the structure and properties of these groups based on defined homomorphisms and group operations.

Discussion Character

  • Conceptual clarification, Mathematical reasoning, Problem interpretation, Assumption checking

Approaches and Questions Raised

  • Participants explore the definitions of the groups and the operations involved in the semidirect products. There are attempts to verify the correctness of the group elements and operations. Calculations of specific products within the groups are performed to determine their structures.

Discussion Status

The discussion is ongoing, with participants questioning the conclusions drawn about the number of elements in each group and the validity of their calculations. Some participants express uncertainty about the representation of generators and the implications for isomorphism. There is a recognition of differing interpretations regarding the structure of the groups.

Contextual Notes

Participants note potential confusion regarding the number of elements in the groups, with some asserting that both groups should have 18 elements, while others suggest they may have 6. The representation of group generators is also under scrutiny, with suggestions for alternative notations and calculations.

pondzo
Messages
168
Reaction score
0

Homework Statement



Write ##C_3\langle x|x^3=1\rangle## and ##C_2=\langle y|y^2=1\rangle##
Let ##h_1,h_2:C_2\rightarrow \text{ Aut}(C_3\times C_3)## be the following homomorphisms:
$$h_1(y)(x^a,x^b)=(x^{-a},x^{-b})~;~~~~~~h_2(y)(x^a,x^b)=(x^b,x^a)$$
Put ##G(1)=(C_3\times C_3)\rtimes_{h_1}C_2 \text{ and } G(2)=(C_3\times C_3)\rtimes_{h_2}C_2##

Is ##G(1)\cong G(2)##? If so write down an explicit isomorphism. If not, explain why not.

Homework Equations



I think the group operation for this semidirect products is:
$$\cdot ~:~(C_3\times C_3)\rtimes_{h_i}C_2~~~~~~~i=\{1,2\}$$ $$ \text{ Where } ((x_1,x_2),y)\cdot ((x_1',x_2'),y')=((x_1,x_2)h(y)(x_1',x_2'),yy')$$ $$ \text{ for } ((x_1,x_2),y),((x_1',x_2'),y')\in (C_3\times C_3)\rtimes_{h_i}C_2$$

The Attempt at a Solution



First of all, I'm not too sure if I have the elements in each group in the correct form or if I defined the group operation correctly. Assuming I have done these two things correctly, I will continue with my attempt of a solution.

Write ##C_3\times C_3=\langle x_1,x_2|x_1^3=x_2^3=1, x_2x_1=x_1x_2\rangle##.
Let ##Y=((1,1),y)## and ##X=((x_1,x_2),1)##
I will now do the crucial calculation, ##YX##, in both G(1) and G(2):

Crucial calculation in ##G(1)##:
##YX=((1,1),y)\cdot((x_1,x_2),1)=((1,1)h(y)(x_1,x_2),y1)=(((x_1)^{-1},(x_2)^{-1}),y)=(((x_1)^2,(x_2)^2),y)=X^2Y##
Thus ##G(1)=\langle X,Y|X^3=Y^2=1,YX=X^2Y\rangle\cong D_6 ## (Binary dihedral group of order 6)

Crucial calculation in ##G(2)##:
##YX=((1,1),y)\cdot((x_1,x_2),1)=((1,1)h(y)(x_1,x_2),y1)=((x_1,x_2),y)=XY##
Thus ##G(2)=\langle X,Y|X^3=Y^2=1,YX=XY\rangle \cong C_3\times C_2##

So ##G(1)\ncong G(2)##.

I am not sure If my final conclusions about G(1) and G(2) are correct. I.e. I'm not sure if I can write ##G(1)=\langle X,Y|X^3=Y^2=1,YX=X^2Y\rangle## and ##G(2)=\langle X,Y|X^3=Y^2=1,YX=XY\rangle##
 
Physics news on Phys.org
pondzo said:

Homework Statement



Write ##C_3\langle x|x^3=1\rangle## and ##C_2=\langle y|y^2=1\rangle##
Let ##h_1,h_2:C_2\rightarrow \text{ Aut}(C_3\times C_3)## be the following homomorphisms:
$$h_1(y)(x^a,x^b)=(x^{-a},x^{-b})~;~~~~~~h_2(y)(x^a,x^b)=(x^b,x^a)$$
Put ##G(1)=(C_3\times C_3)\rtimes_{h_1}C_2 \text{ and } G(2)=(C_3\times C_3)\rtimes_{h_2}C_2##

Is ##G(1)\cong G(2)##? If so write down an explicit isomorphism. If not, explain why not.

Homework Equations



I think the group operation for this semidirect products is:
$$\cdot ~:~(C_3\times C_3)\rtimes_{h_i}C_2~~~~~~~i=\{1,2\}$$ $$ \text{ Where } ((x_1,x_2),y)\cdot ((x_1',x_2'),y')=((x_1,x_2)h(y)(x_1',x_2'),yy')$$ $$ \text{ for } ((x_1,x_2),y),((x_1',x_2'),y')\in (C_3\times C_3)\rtimes_{h_i}C_2$$

The Attempt at a Solution



First of all, I'm not too sure if I have the elements in each group in the correct form or if I defined the group operation correctly. Assuming I have done these two things correctly, I will continue with my attempt of a solution.

Write ##C_3\times C_3=\langle x_1,x_2|x_1^3=x_2^3=1, x_2x_1=x_1x_2\rangle##.
Let ##Y=((1,1),y)## and ##X=((x_1,x_2),1)##
I will now do the crucial calculation, ##YX##, in both G(1) and G(2):

Crucial calculation in ##G(1)##:
##YX=((1,1),y)\cdot((x_1,x_2),1)=((1,1)h(y)(x_1,x_2),y1)=(((x_1)^{-1},(x_2)^{-1}),y)=(((x_1)^2,(x_2)^2),y)=X^2Y##
Thus ##G(1)=\langle X,Y|X^3=Y^2=1,YX=X^2Y\rangle\cong D_6 ## (Binary dihedral group of order 6)

Crucial calculation in ##G(2)##:
##YX=((1,1),y)\cdot((x_1,x_2),1)=((1,1)h(y)(x_1,x_2),y1)=((x_1,x_2),y)=XY##
Thus ##G(2)=\langle X,Y|X^3=Y^2=1,YX=XY\rangle \cong C_3\times C_2##

So ##G(1)\ncong G(2)##.

I am not sure If my final conclusions about G(1) and G(2) are correct. I.e. I'm not sure if I can write ##G(1)=\langle X,Y|X^3=Y^2=1,YX=X^2Y\rangle## and ##G(2)=\langle X,Y|X^3=Y^2=1,YX=XY\rangle##

I've checked everything and it is correct. G(1) and G(2) are correctly represented and identified.
(At least I've found nothing wrong and I even checked whether the normal subgroup is on the correct side of ##\rtimes##.)
 
Aren't ##G(1)## and ##G(2)## supposed to have ##18## elements? Why do you suddenly conclude they have ##6## elements?
 
micromass said:
Aren't ##G(1)## and ##G(2)## supposed to have ##18## elements? Why do you suddenly conclude they have ##6## elements?

Upon further consideration I agree with you. I think my conclusions had something to do with how I represented the generators of the ##(C_3\times C_3)## part of the semidirect product. Would it be correct to denote ##X_1=((x,1),1)## and ##X_2=((1,x),1)## and then do the crucial calculations ##YX_1## and ##YX_2## in both G(1) and G(2)?

So, the crucial calculations in G(1) would be:
##YX_1=((1,1),y)\cdot((x,1),1)=((1,1)h(y)(x,1),y1)=((x^{-1},1),y)=((x^2,1),y)=X_1^2Y##
##YX_2=((1,1),y)\cdot((1,x),1)=((1,1)h(y)(1,x),y1)=((1,x^{-1}),y)=((1,x^2),y)=X_2^2Y##
Thus ##G(1)\cong \langle X_1,X_2,Y|X_1^3=X_2^3=Y^2=1,YX_1=X_1^2Y,YX_2=X_2^2Y,X_2X_1=X_1X_2 \rangle\cong ??## (Is there a name for this?)

And the crucial calculations in G(2) would be:
##YX_1=((1,1),y)\cdot((x,1),1)=((1,1)h(y)(x,1),y1)=((x,1),y)=X_1Y##
##YX_2=((1,1),y)\cdot((1,x),1)=((1,1)h(y)(1,x),y1)=((1,x),y)=X_2Y##
Thus ##G(1)\cong \langle X_1,X_2,Y|X_1^3=X_2^3=Y^2=1,YX_1=X_1Y,YX_2=X_2Y,X_2X_1=X_1X_2 \rangle\cong C_3\times C_3 \times C_2##

And so ##G(1)\ncong G(2)## since one of these groups is abelian and the other isn't.
 
pondzo said:
Upon further consideration I agree with you. I think my conclusions had something to do with how I represented the generators of the ##(C_3\times C_3)## part of the semidirect product. Would it be correct to denote ##X_1=((x,1),1)## and ##X_2=((1,x),1)## and then do the crucial calculations ##YX_1## and ##YX_2## in both G(1) and G(2)?

So, the crucial calculations in G(1) would be:
##YX_1=((1,1),y)\cdot((x,1),1)=((1,1)h(y)(x,1),y1)=((x^{-1},1),y)=((x^2,1),y)=X_1^2Y##
##YX_2=((1,1),y)\cdot((1,x),1)=((1,1)h(y)(1,x),y1)=((1,x^{-1}),y)=((1,x^2),y)=X_2^2Y##
Thus ##G(1)\cong \langle X_1,X_2,Y|X_1^3=X_2^3=Y^2=1,YX_1=X_1^2Y,YX_2=X_2^2Y,X_2X_1=X_1X_2 \rangle\cong ??## (Is there a name for this?)
No. It's simply the direct product of the symmetric group ##S_3 ≅ D_3## with ##C_3##. (You denoted ##D_3## as ##D_6##.)

And the crucial calculations in G(2) would be:
##YX_1=((1,1),y)\cdot((x,1),1)=((1,1)h(y)(x,1),y1)=((x,1),y)=X_1Y##
##YX_2=((1,1),y)\cdot((1,x),1)=((1,1)h(y)(1,x),y1)=((1,x),y)=X_2Y##
Thus ##G(1)\cong \langle X_1,X_2,Y|X_1^3=X_2^3=Y^2=1,YX_1=X_1Y,YX_2=X_2Y,X_2X_1=X_1X_2 \rangle\cong C_3\times C_3 \times C_2##

And so ##G(1)\ncong G(2)## since one of these groups is abelian and the other isn't.
I would have concluded with the normal subgroups ##<YX>## you defined in the first place.
If ##G(1)## and ##G(2)## were isomorphic, you could consider the quotient groups and the fact there is only one group of order three.
 
Last edited:

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
12
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K