- #1
- 407
- 0
Find the area of x2/3/9 +y2/3/4 =1
The parametrizations I used are x=27cos3t y=8sin3t
Area = [tex]\int xdy = \int_{0}^{2\pi} 27cos^3(t)24sin^2(t)cos(t)= \int_{0}^{2\pi} 27cos^4(t)24sin^2(t)=648((2\pi)/16+sin(4\pi)/64-sin(8\pi)/64-sin(12\pi)/192) = 81\pi[/tex]
Is this right?
The parametrizations I used are x=27cos3t y=8sin3t
Area = [tex]\int xdy = \int_{0}^{2\pi} 27cos^3(t)24sin^2(t)cos(t)= \int_{0}^{2\pi} 27cos^4(t)24sin^2(t)=648((2\pi)/16+sin(4\pi)/64-sin(8\pi)/64-sin(12\pi)/192) = 81\pi[/tex]
Is this right?
Last edited: