MHB [ASK] Determinant of a Matrix with Polynomial Elements

Click For Summary
To simplify the determinant of a matrix with polynomial elements, it is recommended to use row and column operations. The process begins by subtracting one row from another to simplify the elements, as demonstrated with specific calculations. Continuing this method leads to a series of transformations that ultimately simplify the matrix significantly. Following these steps will yield a final result of the constant value -8. This approach effectively reduces the complexity of the determinant calculation.
Monoxdifly
MHB
Messages
288
Reaction score
0
Help me if what I have done so far can be simplified further.
 

Attachments

  • Capture.JPG
    Capture.JPG
    59.4 KB · Views: 112
Mathematics news on Phys.org
Monoxdifly said:
Help me if what I have done so far can be simplified further.
You would do better to evaluate this determinant using row and column operations. Start by subtracting row 2 from row 3, using calculations like $(n+2)^2 - (n+1)^2 = n^2+4n+4 - (n^2+2n+1) = 2n+3$: $$ \begin{vmatrix}n^2 & (n+1)^2 & (n+2)^2 \\ (n+1)^2 & (n+2)^2 & (n+3)^2 \\ (n+2)^2 & (n+3)^2 & (n+4)^2 \end{vmatrix} = \begin{vmatrix}n^2 & (n+1)^2 & (n+2)^2 \\ (n+1)^2 & (n+2)^2 & (n+3)^2 \\ 2n+3 & 2n+5 & 2n+7 \end{vmatrix}.$$ Then continue like this: $$\begin{aligned} \begin{vmatrix}n^2 & (n+1)^2 & (n+2)^2 \\ (n+1)^2 & (n+2)^2 & (n+3)^2 \\ (n+2)^2 & (n+3)^2 & (n+4)^2 \end{vmatrix} &= \begin{vmatrix}n^2 & (n+1)^2 & (n+2)^2 \\ (n+1)^2 & (n+2)^2 & (n+3)^2 \\ 2n+3 & 2n+5 & 2n+7 \end{vmatrix} \\ \\ \text{(Subtract row 1 from row 2)}\qquad &= \begin{vmatrix}n^2 & (n+1)^2 & (n+2)^2 \\ 2n+1 & 2n+3 & 2n+5 \\ 2n+3 & 2n+5 & 2n+7 \end{vmatrix} \\ \\ \text{(Subtract col 2 from col 3)}\qquad &= \begin{vmatrix}n^2 & (n+1)^2 & 2n+3 \\ 2n+1 & 2n+3 & 2\\ 2n+3 & 2n+5 & 2 \end{vmatrix} \\ \\ \text{(Subtract col 1 from col 2)}\qquad &= \begin{vmatrix}n^2 & 2n+1 & 2n+3 \\ 2n+1 & 2& 2\\ 2n+3 & 2 & 2 \end{vmatrix} .\end{aligned}$$ Now subtract col 2 from col 3. Proceed in this way and you should end with a very simple answer, namely the constant $-8$.
 
Last edited:
Okay, thanks Opalg!
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K