MHB [ASK] Determinant of a Matrix with Polynomial Elements

Monoxdifly
MHB
Messages
288
Reaction score
0
Help me if what I have done so far can be simplified further.
 

Attachments

  • Capture.JPG
    Capture.JPG
    59.4 KB · Views: 104
Mathematics news on Phys.org
Monoxdifly said:
Help me if what I have done so far can be simplified further.
You would do better to evaluate this determinant using row and column operations. Start by subtracting row 2 from row 3, using calculations like $(n+2)^2 - (n+1)^2 = n^2+4n+4 - (n^2+2n+1) = 2n+3$: $$ \begin{vmatrix}n^2 & (n+1)^2 & (n+2)^2 \\ (n+1)^2 & (n+2)^2 & (n+3)^2 \\ (n+2)^2 & (n+3)^2 & (n+4)^2 \end{vmatrix} = \begin{vmatrix}n^2 & (n+1)^2 & (n+2)^2 \\ (n+1)^2 & (n+2)^2 & (n+3)^2 \\ 2n+3 & 2n+5 & 2n+7 \end{vmatrix}.$$ Then continue like this: $$\begin{aligned} \begin{vmatrix}n^2 & (n+1)^2 & (n+2)^2 \\ (n+1)^2 & (n+2)^2 & (n+3)^2 \\ (n+2)^2 & (n+3)^2 & (n+4)^2 \end{vmatrix} &= \begin{vmatrix}n^2 & (n+1)^2 & (n+2)^2 \\ (n+1)^2 & (n+2)^2 & (n+3)^2 \\ 2n+3 & 2n+5 & 2n+7 \end{vmatrix} \\ \\ \text{(Subtract row 1 from row 2)}\qquad &= \begin{vmatrix}n^2 & (n+1)^2 & (n+2)^2 \\ 2n+1 & 2n+3 & 2n+5 \\ 2n+3 & 2n+5 & 2n+7 \end{vmatrix} \\ \\ \text{(Subtract col 2 from col 3)}\qquad &= \begin{vmatrix}n^2 & (n+1)^2 & 2n+3 \\ 2n+1 & 2n+3 & 2\\ 2n+3 & 2n+5 & 2 \end{vmatrix} \\ \\ \text{(Subtract col 1 from col 2)}\qquad &= \begin{vmatrix}n^2 & 2n+1 & 2n+3 \\ 2n+1 & 2& 2\\ 2n+3 & 2 & 2 \end{vmatrix} .\end{aligned}$$ Now subtract col 2 from col 3. Proceed in this way and you should end with a very simple answer, namely the constant $-8$.
 
Last edited:
Okay, thanks Opalg!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
8
Views
993
Replies
14
Views
3K
Replies
4
Views
2K
Replies
3
Views
2K
Replies
6
Views
2K
Replies
4
Views
952
Back
Top