MHB [ASK] Probability with Factors

AI Thread Summary
The discussion centers on calculating the probability of drawing two differently colored balls from a bag containing m white balls and n red balls, where mn equals 200 and m is greater than n. The probability of drawing two different colored balls is given as 40/87, leading to the equation 2mn/((m+n)(m+n-1)) = 40/87. Through factorization and solving for k, it is determined that m equals 20 and n equals 10, resulting in k being 30. The final calculation for 2m + 3n yields 80. The problem illustrates the application of probability in combinatorial contexts.
Monoxdifly
MHB
Messages
288
Reaction score
0
In a bag there are m white balls and n red balls with mn = 200 and there are more white balls than red balls. If two balls are taken randomly at once and the probability of taking two different colored balls is $$\frac{40}{87}$$ then the value of 2m + 3n is ...
A. 30
B. 45
C. 50
D. 70
E. 80

Okay, so the possibility of m and n are like this:
m = 200 and n =1
m = 100 and n = 2
m = 50 and n = 4
m = 40 and n = 5
m = 25 and n = 8
m = 20 and n = 10

Do I need to count their probability one by one then adding them up to make $$\frac{40}{87}$$? Or am I not supposed to do that?
 
Mathematics news on Phys.org
P(two different colors) =

$\dfrac{m}{m+n} \cdot \dfrac{n}{m+n-1} + \dfrac{n}{m+n} \cdot \dfrac{m}{m+n-1} = \dfrac{40}{87}$

$\dfrac{2mn}{(m+n)(m+n-1)} = \dfrac{40}{87}$

$\dfrac{400}{k(k-1)} = \dfrac{40}{87}$, where $k = m+n$

$k = m+n = 30 \text{ and } mn = 200 \implies m = 20 \text{ and } n = 10$
 
Took me a while to understand that k = 30 comes from the factorization of $$k^2-k-870=0$$, but thank you. Now I understand. :)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top