Attempt to solve this system of three linear equations

Click For Summary

Discussion Overview

The discussion revolves around a system of three linear equations derived from points on a quadratic curve, specifically examining whether it is possible to add an unknown or coefficient to make an unsolvable system solvable. The context includes theoretical exploration of linear equations and their relationships.

Discussion Character

  • Exploratory
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants question the assertion that the system is unsolvable, noting that there are three equations and three unknowns, and ask for clarification on the independence of the equations.
  • Others argue that the second and third equations are inconsistent, representing parallel planes in three-dimensional space, which cannot intersect.
  • One participant suggests that adding another variable could transform the problem into a solvable one, providing an example of how this could work in linear programming.
  • Another participant emphasizes that the term "unsolvable" means there is no solution, rather than a lack of understanding.
  • Some participants express frustration with the hypothetical nature of the problem, suggesting that it detracts from the analysis.
  • A later reply proposes that if the curve has a specific form, then one of the points cannot be on the curve, indicating a potential misunderstanding of the problem's assumptions.

Areas of Agreement / Disagreement

Participants generally disagree on the nature of the system's solvability, with some asserting it is unsolvable due to contradictions, while others believe it can be made solvable by adding variables. The discussion remains unresolved regarding the implications of the hypothetical scenario presented.

Contextual Notes

There are unresolved assumptions regarding the independence of the equations and the nature of the curve described. The discussion also touches on the implications of adding variables and how it relates to linear programming techniques.

Elara04
Messages
5
Reaction score
0
TL;DR
Is it possible to add an unknown or co-efficient to make an unsolvable system of equation solvable???
The point (1, 5) is on the curve: y=ax^2+bx+c. This point gives the linear equation: 5 = a + b + c. A second point on the curve, (2, 10) gives the linear equation 10=4a+2b+c. A student called Erika thinks that the point (2, 19) is also on the curve.

5 = a + b + c.
10=4a+2b+c
19=4a+2b+c

the system of equations is unsolvable, but I have been told that there is a way to add another unknown or co-efficient to make it possible to answer the question. Does anyone have any ideas?
 
Physics news on Phys.org
Elara04 said:
Summary: Is it possible to add an unknown or co-efficient to make an unsolvable system of equation solvable?

The point (1, 5) is on the curve: y=ax^2+bx+c. This point gives the linear equation: 5 = a + b + c. A second point on the curve, (2, 10) gives the linear equation 10=4a+2b+c. A student called Erika thinks that the point (2, 19) is also on the curve.

5 = a + b + c.
10=4a+2b+c
19=4a+2b+c

the system of equations is unsolvable, but I have been told that there is a way to add another unknown or co-efficient to make it possible to answer the question. Does anyone have any ideas?
Welcome to PF.

Why do you say this system is unsolvable? You have 3 equations and 3 unknowns -- are the equations not independent?

Please tell us more about what you know about solving simulataneous equations so we can try to help your understanding.

Also, is this for schoolwork?
 
  • Like
Likes   Reactions: jedishrfu
berkeman said:
Why do you say this system is unsolvable? You have 3 equations and 3 unknowns -- are the equations not independent?
Elara04 said:
10=4a+2b+c
19=4a+2b+c
Oh, LOL. Are you trolling us?
 
  • Haha
Likes   Reactions: jedishrfu
Elara04 said:
Summary: Is it possible to add an unknown or co-efficient to make an unsolvable system of equation solvable?

The point (1, 5) is on the curve: y=ax^2+bx+c. This point gives the linear equation: 5 = a + b + c. A second point on the curve, (2, 10) gives the linear equation 10=4a+2b+c. A student called Erika thinks that the point (2, 19) is also on the curve.

5 = a + b + c.
10=4a+2b+c
19=4a+2b+c

the system of equations is unsolvable, but I have been told that there is a way to add another unknown or co-efficient to make it possible to answer the question. Does anyone have any ideas?
Don't think about the equations, think about the function ##y = ax^2 + bx + c##. Can we have both (2, 10) and (2, 19) on this curve?

-Dan
 
  • Like
Likes   Reactions: SammyS
berkeman said:
Why do you say this system is unsolvable? You have 3 equations and 3 unknowns
Which isn't enough to make the system solvable.
10=4a+2b+c
19=4a+2b+c
The 2nd and 3rd equations are inconsistent. No set of values a, b, and c can satisfy both equations. Geometrically, these two equations represent two parallel planes in ##\mathbb R^3##. Obviously, two parallel planes can't share any common points.
berkeman said:
Oh, LOL. Are you trolling us?
No, not at all. The 3rd equation comes from a hypothetical student Erika who thinks that a certain point lies on the curve.
 
  • Informative
  • Like
Likes   Reactions: berkeman and vanhees71
Typo maybe? It just doesn't make sense.

Anyway a simple linear set of equations that is "unsolvable" is unsolvable. The point is "unsolvable" in this context doesn't mean "I don't know the answer" it means "there isn't an answer, and there never will be".

You certainly could change the question to make a different problem solvable though.
 
Mark44 said:
The 3rd equation comes from a hypothetical student Erika who thinks that a certain point lies on the curve.
Hypothetical Erika is a waste of time. State the problem clearly and proceed with the analysis, the back story isn't necessary.

BTW, this isn't calculus.
 
  • Like
Likes   Reactions: malawi_glenn
DaveE said:
Hypothetical Erika is a waste of time. State the problem clearly and proceed with the analysis, the back story isn't necessary.
The problem was stated clearly. The part about Erika was a necessary part of the problem.
 
  • Like
Likes   Reactions: SammyS
Could try to find solutions modulo (?) . I would not want to try it though. eg 7 mod 5 = 2 so the same "2" could represent two different numbers.
 
  • #10
The last two equations are contradictory as they stand:
10=4a+2b+c
19=4a+2b+c

Adding another variable makes a solvable problem:
10=4a+2b+c
19=4a+2b+c + d
Clearly, we can set d = 9 and these two equations are now redundant, not contradictory, so the new system of equations is solvable.
This is not as unusual and useless as you might think. In linear programming, there are algorithms (Simplex Method) where variables (slack, surplus, and artificial variables) are added to get an easy initial solution. The algorithm then finds other solutions that satisfy the original problem which had inequalities, not equalities as constraints.
 
Last edited:
  • Like
Likes   Reactions: DaveE
  • #11
Elara04 said:
TL;DR Summary: Is it possible to add an unknown or co-efficient to make an unsolvable system of equation solvable???

The point (1, 5) is on the curve: y=ax^2+bx+c. This point gives the linear equation: 5 = a + b + c. A second point on the curve, (2, 10) gives the linear equation 10=4a+2b+c. A student called Erika thinks that the point (2, 19) is also on the curve.

5 = a + b + c.
10=4a+2b+c
19=4a+2b+c

the system of equations is unsolvable, but I have been told that there is a way to add another unknown or co-efficient to make it possible to answer the question. Does anyone have any ideas?

If the curve has an equation of the form y = f(x) then for each x there exists at most one y such that (x,y) is on the curve. It is given that (2,10) is on the curve, so (2,19) is not on the curve and Erika is wrong. Alternatively, it may be that the assumption that the curve has an equation of the form y = f(x) is incorrect, and Erika is right: as for example if x = g(y) = \frac{-y^2 + 29y - 50}{70}.
 

Similar threads

  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 44 ·
2
Replies
44
Views
5K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K