player1_1_1
- 112
- 0
Homework Statement
I have very funny thing to do; I must count average distance between two points in circle of R radius:D (hahaha)
Homework Equations
Defined integrals, parametric equations, etc
The Attempt at a Solution
I am describing the circle in two parametres:
\begin{cases}x(t)=R\cos t\\ y(t)=R\sin t\end{cases}
I can choose any two points by choosing any parameters t_1,t_2 in \langle 0;2\pi\rangle limits. Two points A_1,A_2 will be described by coordinates
A_1=\left(R\cos t_1,R\sin t_1\right),A_2=\left(R\cos t_2,R\sin t_2\right)
and distance between them in t_1,t_2 function
s\left(t_1,t_2\right)=\sqrt{\left(\cos t_1-\cos t_2\right)^2+\left(\sin t_1-\sin t_2\right)^2}
now I am making double integral in limits in which t_1,t_2 changes, tzn t_1,t_2\in\langle 0;2\pi\rangle divided by the field where the function is defined
\frac{\int\limits^{t_1=2\pi}_{t_1=0}\int\limits^{t_2=2\pi}_{t_2=0}\sqrt{\left(\cos t_1-\cos t_2\right)^2+\left(\sin t_1-\sin t_2\right)^2}\mbox{d}t_1\mbox{d}t_2}{\int\limits^{t_1=2\pi}_{t_1=0}\int\limits^{t_2=2\pi}_{t_2=0}\mbox{d}t_1\mbox{d}t_2}
is it correct answer for average value of this function?
now I am counting integral in this way, bottom integral is 4\pi^2 value, so I have
\frac{1}{4\pi^2}\int\limits^{t_1=2\pi}_{t_1=0}\int\limits^{t_2=2\pi}_{t_2=0}\sqrt{\left(\cos t_1-\cos t_2\right)^2+\left(\sin t_1-\sin t_2\right)^2}\mbox{d}t_1\mbox{d}t_2=
=\frac{1}{4\pi^2}\int\limits^{t_1=2\pi}_{t_1=0}\int\limits^{t_2=2\pi}_{t_2=0}\sqrt{\cos^2t_1-2\cos t_1\cos t_2+\cos^2t_2+\sin^2t_1-2\sin t_1\sin t_2+\sin^2t_2}\mbox{d}t_1\mbox{d}t_2=
=\frac{1}{4\pi^2}\int\limits^{t_1=2\pi}_{t_1=0}\int\limits^{t_2=2\pi}_{t_2=0}\sqrt{2-2\cos t_1\cos t_2-2\sin t_1\sin t_2}\mbox{d}t_1\mbox{d}t_2=
=\frac{1}{4\pi^2}\int\limits^{t_1=2\pi}_{t_1=0}\int\limits^{t_2=2\pi}_{t_2=0}\sqrt{2\left(1-\cos\left(t_2-t_1\right)\right)}\mbox{d}t_1\mbox{d}t_2=
=\frac{1}{4\pi^2}\int\limits^{t_1=2\pi}_{t_1=0}\int\limits^{t_2=2\pi}_{t_2=0}\sqrt{4\sin^2\left(\frac{t_2-t_1}{2}\right)}\mbox{d}t_1\mbox{d}t_2=\frac{1}{4\pi^2}\int\limits^{t_1=2\pi}_{t_1=0}\int\limits^{t_2=2\pi}_{t_2=0}2\left|\sin\left(\frac{t_2-t_1}{2}\right)\right|\mbox{d}t_1\mbox{d}t_2
is it good way of thinking? how can I count this double integral (i mean what to do with this abs)? thanks for help!