- #1

parton

- 83

- 1

I have a little problem.

Consider a 4-fermion interaction (neglecting constant factors) of the form [itex] \overline{\psi_{a \mathrm{L}}} \gamma^{\lambda} \psi_{b \mathrm{L}} \overline{\psi_{c \mathrm{L}}} \gamma_{\lambda} \psi_{d \mathrm{L}} [/itex] .

I want to average this interaction over a background consisting of fermions (so it corresponds to the situation where fermions propagate in a background consisting of fermions).

To this purpose, the left-handed current [itex] \overline{\psi_{a \mathrm{L}}} \gamma^{\lambda} \psi_{b \mathrm{L}} [/itex] is approximated by the average value [itex] \langle \overline{\psi_{a \mathrm{L}}} \gamma^{\lambda} \psi_{b \mathrm{L}} \rangle [/itex]

There is the following relation for the averaged value produced by this interaction:

[tex]

\begin{align}

\begin{split}

\overline{\psi_{a \mathrm{L}}} \gamma^{\lambda} \psi_{b \mathrm{L}} \overline{\psi_{c \mathrm{L}}} \gamma_{\lambda} \psi_{d \mathrm{L}} \to & \langle \overline{\psi_{a \mathrm{L}}} \gamma^{\lambda} \psi_{b \mathrm{L}} \rangle \overline{\psi_{c \mathrm{L}}} \gamma_{\lambda} \psi_{d \mathrm{L}} + \overline{\psi_{a \mathrm{L}}} \gamma^{\lambda} \psi_{b \mathrm{L}} \langle \overline{\psi_{c \mathrm{L}}} \gamma_{\lambda} \psi_{d \mathrm{L}} \rangle

\\

& \quad + \langle \overline{\psi_{a \mathrm{L}}} \gamma^{\lambda} \psi_{d \mathrm{L}} \rangle \overline{\psi_{c \mathrm{L}}} \gamma_{\lambda} \psi_{b \mathrm{L}} + \overline{\psi_{a \mathrm{L}}} \gamma^{\lambda} \psi_{d \mathrm{L}} \langle \overline{\psi_{c \mathrm{L}}} \gamma_{\lambda} \psi_{b \mathrm{L}} \rangle

\\

& \quad - \langle \overline{\psi_{a \mathrm{L}}} \gamma^{\lambda} \psi_{b \mathrm{L}} \rangle \langle \overline{\psi_{c \mathrm{L}}} \gamma_{\lambda} \psi_{d \mathrm{L}} \rangle - \langle \overline{\psi_{a \mathrm{L}}} \gamma^{\lambda} \psi_{d \mathrm{L}} \rangle \langle \overline{\psi_{c \mathrm{L}}} \gamma_{\lambda} \psi_{b \mathrm{L}} \rangle.

\end{split}

\end{align}

[/tex]

But I don't really understand how to obtain this relation. The first two terms look reasonable, but I don't understand the remaining ones.

Ok, the 3rd and 4th terms might correspond to an "exchange term", where fermion c and d are interchanged, because in the case where c is equal to d, we cannot distinguish between the propagating and the background fermion (on the other hand, if c is not equal to d, this exchange term should be 0). But why is there no additional minus sign, because of Fermi-Dirac statistics?

Maybe it has something to do with a Fierz transformation, where the minus sign cancels out, i.e.,

[tex] \overline{\psi}_{a \mathrm{L}} \gamma^{\lambda} \psi_{b \mathrm{L}} \overline{\psi_{c \mathrm{L}}} \gamma_{\lambda} \psi_{d \mathrm{L}} = \overline{\psi}_{a \mathrm{L}} \gamma^{\lambda} \psi_{d \mathrm{L}} \overline{\psi_{c \mathrm{L}}} \gamma_{\lambda} \psi_{b \mathrm{L}}.[/tex]

And how could the last two terms be interpreted?

I hope somebody could help me understanding the relation above.