Average Kinetic Energy of Electron in the Conduction Band

Click For Summary
The discussion focuses on deriving the expression for the average kinetic energy of electrons in the conduction band, given as <K.E.> = E_c + (3/2)k_B T. Participants explore the integration of the numerator and denominator involving the density of states g(E) and the Fermi-Dirac distribution f(E). A key insight is the relationship between the term (E - E_c) and the substitution x = (E - E_c) / (k_B T). The use of partition sums and the Feynman-Hellmann theorem is suggested as a method to simplify the calculations. Overall, the conversation emphasizes the mathematical techniques necessary for deriving the average kinetic energy expression.
Teymur
Messages
16
Reaction score
3
Homework Statement
Show that:
$$<\:K.E.>\:=E_c+3/2\:k_B\:T$$
Relevant Equations
$$<\:K.E.>\:=\frac{\left(total\:K.E.\right)}{\left(no.of\:electrons\right)}$$

$$<\:K.E.>\:=\:\frac{\int \:\left(E-E_c\right)g\left(E\right)f\left(E\right)dE}{\int \:g\left(E\right)f\left(E\right)dE}$$
Hello,
I've seen in a few books on solid state physics that one can deduce an expression for average K.E.:

$$<\:K.E.>\:=E_c+3/2\:k_B\:T$$

from the following:

$$<\:K.E.>\:=\:\frac{\int \:\left(E-E_c\right)g\left(E\right)f\left(E\right)dE}{\int \:g\left(E\right)f\left(E\right)dE}$$

I can't, however, find any work through of how to do so. I've had a go at the bottom part:

where ##n=\int g\left(E\right)f\left(E\right)dE## and ##\int \:x^{\frac{1}{2}}exp\left(-x\right)dx=\frac{\pi \:^{\frac{1}{2}}}{2}##

and

##g\left(E\right)=\frac{\left(2m_e\right)^{\frac{3}{2}}\left(E-E_c\right)^{\frac{1}{2}}}{2\pi ^2ℏ^3}## and ##f\left(E\right)\approx exp\left(\frac{\mu -E}{k_B\:T}\right)##

to get:

$$n=2\left(\frac{m_ek_B\:T}{2\pi ℏ^2}\right)^{\frac{3}{2}}\:exp\left(\frac{\mu -E_c}{k_B\:T}\right)$$

But how does one integrate the numerator with the ##\left(E\:-E_c\right)## term and simplify to the desired result?
 
Physics news on Phys.org
p.s. I used: ##x=\left(\frac{E-E_c}{k_B\:T}\right)## for the integral: ##\int \:g\left(E\right)f\left(E\right)dE \rightarrow \int \:x^{\frac{1}{2}}exp\left(-x\right)dx##
 
Teymur said:
But how does one integrate the numerator with the ##\left(E\:-E_c\right)## term and simplify to the desired result?
The numerator integration is very similar to the integration in the denominator. The factor ##\left(E\:-E_c\right)## has a simple relation to ##x##.
 
  • Like
Likes PeroK and hutchphd
Aha .. I'm not sure why I didn't spot that.
 
Another very important trick used in statistical physics is to calculate the denominator, the socalled "partition sum" and then take a derivative wrt. ##\beta=1/(k_{\text{B}} T)##, which is an application of the celebrated Feynman-Hellmann theorem.
 
So is there some elegant way to do this or am I just supposed to follow my nose and sub the Taylor expansions for terms in the two boost matrices under the assumption ##v,w\ll 1##, then do three ugly matrix multiplications and get some horrifying kludge for ##R## and show that the product of ##R## and its transpose is the identity matrix with det(R)=1? Without loss of generality I made ##\mathbf{v}## point along the x-axis and since ##\mathbf{v}\cdot\mathbf{w} = 0## I set ##w_1 = 0## to...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
4
Views
395
Replies
19
Views
2K