Average Kinetic Energy of Electron in the Conduction Band

Click For Summary

Homework Help Overview

The discussion revolves around deriving an expression for the average kinetic energy of electrons in the conduction band within the context of solid state physics. The original poster references a formula involving integrals of energy distributions and seeks clarification on the integration process involved in obtaining the desired result.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • The original poster attempts to integrate expressions involving the density of states and the Fermi-Dirac distribution but struggles with the integration of the numerator. Some participants suggest that the relationship between the variables may simplify the integration process.

Discussion Status

Participants are actively engaging with the mathematical details of the integration process. There is recognition of a potential simplification related to the variable substitution, and one participant introduces a method from statistical physics that may provide further insight into the problem.

Contextual Notes

The discussion includes references to specific mathematical techniques and assumptions related to the behavior of electrons in a conduction band, as well as the use of statistical mechanics principles. The original poster's attempts are framed within the constraints of deriving a specific expression without complete guidance on the integration steps.

Teymur
Messages
16
Reaction score
3
Homework Statement
Show that:
$$<\:K.E.>\:=E_c+3/2\:k_B\:T$$
Relevant Equations
$$<\:K.E.>\:=\frac{\left(total\:K.E.\right)}{\left(no.of\:electrons\right)}$$

$$<\:K.E.>\:=\:\frac{\int \:\left(E-E_c\right)g\left(E\right)f\left(E\right)dE}{\int \:g\left(E\right)f\left(E\right)dE}$$
Hello,
I've seen in a few books on solid state physics that one can deduce an expression for average K.E.:

$$<\:K.E.>\:=E_c+3/2\:k_B\:T$$

from the following:

$$<\:K.E.>\:=\:\frac{\int \:\left(E-E_c\right)g\left(E\right)f\left(E\right)dE}{\int \:g\left(E\right)f\left(E\right)dE}$$

I can't, however, find any work through of how to do so. I've had a go at the bottom part:

where ##n=\int g\left(E\right)f\left(E\right)dE## and ##\int \:x^{\frac{1}{2}}exp\left(-x\right)dx=\frac{\pi \:^{\frac{1}{2}}}{2}##

and

##g\left(E\right)=\frac{\left(2m_e\right)^{\frac{3}{2}}\left(E-E_c\right)^{\frac{1}{2}}}{2\pi ^2ℏ^3}## and ##f\left(E\right)\approx exp\left(\frac{\mu -E}{k_B\:T}\right)##

to get:

$$n=2\left(\frac{m_ek_B\:T}{2\pi ℏ^2}\right)^{\frac{3}{2}}\:exp\left(\frac{\mu -E_c}{k_B\:T}\right)$$

But how does one integrate the numerator with the ##\left(E\:-E_c\right)## term and simplify to the desired result?
 
Physics news on Phys.org
p.s. I used: ##x=\left(\frac{E-E_c}{k_B\:T}\right)## for the integral: ##\int \:g\left(E\right)f\left(E\right)dE \rightarrow \int \:x^{\frac{1}{2}}exp\left(-x\right)dx##
 
Teymur said:
But how does one integrate the numerator with the ##\left(E\:-E_c\right)## term and simplify to the desired result?
The numerator integration is very similar to the integration in the denominator. The factor ##\left(E\:-E_c\right)## has a simple relation to ##x##.
 
  • Like
Likes   Reactions: PeroK and hutchphd
Aha .. I'm not sure why I didn't spot that.
 
Another very important trick used in statistical physics is to calculate the denominator, the socalled "partition sum" and then take a derivative wrt. ##\beta=1/(k_{\text{B}} T)##, which is an application of the celebrated Feynman-Hellmann theorem.
 
  • Like
Likes   Reactions: PeroK

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
Replies
4
Views
861
Replies
19
Views
3K