Average momentum of an avalanche

  • Thread starter Thread starter I_Try_Math
  • Start date Start date
  • Tags Tags
    Momentum
AI Thread Summary
The discussion centers on calculating the average momentum of an avalanche, with a focus on understanding the correct formula and units. The initial calculation provided was incorrect due to a misunderstanding of average momentum, which should be defined as mass times average velocity (mv_avg). Participants noted that the original answer lacked proper units, leading to confusion about its validity. After reevaluating the calculations and incorporating the correct units, the user was able to arrive at the textbook's answer. This highlights the importance of unit consistency in physics calculations.
I_Try_Math
Messages
114
Reaction score
22
Homework Statement
What is the average momentum of an avalanche that moves a 40-cm-thick layer of snow over an area of 100 m by 500 m over a distance of 1 km down a hill in 5.5 s? Assume a density of 350 kg/ m^3 for the snow.
Relevant Equations
##\rho## = mv
##m_s## = mass of snow
##V_s## = volume of snow
##\vec{v}## = velocity of snow
D = density of snow

##\rho_{avg} = \frac{\rho}{V_s}##
##=\frac{m_s \vec{v}}{V_s}##
##=\frac{V_s D \vec{v}}{V_s}##
##=D \vec{v}##
##=350 \frac{1,000}{5.5}##
##=63,636.4##
The textbook's answer is ##1.3 \times 10^9##. I guess I must not be understanding what's meant by "average momentum" since my answer is wrong. Any help is appreciated.
 
Physics news on Phys.org
I_Try_Math said:
Homework Statement: What is the average momentum of an avalanche that moves a 40-cm-thick layer of snow over an area of 100 m by 500 m over a distance of 1 km down a hill in 5.5 s? Assume a density of 350 kg/ m^3 for the snow.
Relevant Equations: ##\rho## = mv

##m_s## = mass of snow
##V_s## = volume of snow
##\vec{v}## = velocity of snow
D = density of snow

##\rho_{avg} = \frac{\rho}{V_s}##
##=\frac{m_s \vec{v}}{V_s}##
##=\frac{V_s D \vec{v}}{V_s}##
##=D \vec{v}##
##=350 \frac{1,000}{5.5}##
##=63,636.4##
The textbook's answer is ##1.3 \times 10^9##. I guess I must not be understanding what's meant by "average momentum" since my answer is wrong. Any help is appreciated.
That calculation doesn't make a lot of sense. First things first: How would you define average momentum for an avalanche?
 
How do you know that your answer is wrong? You quote numbers without units so both you and the texbook can be correct in principle. Had you used units, you would have seen that momentum over volume, your starting equation, does not have units of momentum because it is divided by volume.
 
PeroK said:
That calculation doesn't make a lot of sense. First things first: How would you define average momentum for an avalanche?
I suppose you could define it as ##mv_{avg}##?
 
That would work.
 
  • Like
Likes PeroK, I_Try_Math and MatinSAR
kuruman said:
How do you know that your answer is wrong? You quote numbers without units so both you and the texbook can be correct in principle. Had you used units, you would have seen that momentum over volume, your starting equation, does not have units of momentum because it is divided by volume.
Right I will keep that in mind. Found out my original answer has units ##\frac{kg}{m^2s}##. Obviously incorrect. I worked through it and got the correct answer.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top