Average of function vs. function evaluated at average

  • Thread starter Thread starter nigeisel
  • Start date Start date
  • Tags Tags
    Average Function
nigeisel
Messages
1
Reaction score
0
Dear everyone,
consider a function f(x) of a random variable x with average m and probability distribution p(x).

I would like to know under which conditions the average of f(x) is greater than f(m), i.e., under which conditions is the average of the function greater than the function evaluated at the average value of the random variable.

\int p(x) f(x) dx > f(m) ?

Does anyone know about theorems that might help me? I suppose it depends on the concaveness of the function f and shape of the distribution p.

I would be very grateful for help.
Nico
 
Physics news on Phys.org
If the function is concave, it does not depend on tha shape of p. See http://en.wikipedia.org/wiki/Jensen%27s_inequality"
 
Last edited by a moderator:
In fact, that property is often used as the very definition of concave, convex, and linear.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top