MHB -b.2.2.33 - Homogeneous first order ODEs, direction fields and integral curves

Click For Summary
The discussion focuses on solving the homogeneous first-order ordinary differential equation (ODE) given by dy/dx = (4y - 3x) / (2x - y). Participants explore the substitution u = y/x to simplify the equation, leading to a separable form. They derive the equation into a more manageable format and discuss integrating both sides using partial fractions. The conversation includes verifying steps and clarifying the algebra involved in reaching the solution. Ultimately, the participants express appreciation for the learning process and the visual representation of solutions through a slope field.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\dfrac{dy}{dx}=\dfrac{4y-3x}{2x-y}$
OK I assume u subst so we can separate
$$\dfrac{dy}{dx}= \dfrac{y/x-3}{2-y/x} $$
 
Last edited:
Physics news on Phys.org
You have dropped the "4"!

The equation $\frac{dy}{dx}= \frac{4y- 3x}{2x- y}$.

Divide both numerator and denominator by x:
$\frac{dy}{dx}= \frac{4\frac{y}{x}- 2}{2- \frac{y}{x}}$.

Now let $u= \frac{y}{x}$ so that $y= xu$ and $\frac{dy}{dx}= x\frac{du}{dx}+ u$.
The equation becomex $x\frac{du}{dx}+ u= \frac{4u- 2}{2- u}$.
 
$\dfrac{dy}{dx} = \dfrac{4 \frac{y}{x} - {\color{red}3}}{2 - \frac{y}{x}}$
 
Yes, thanks.
 
$x\dfrac{du}{dx}+ u= \dfrac{4u- 3}{2- u}$
so
$x\frac{du}{dx}
=\dfrac{4u- 3}{2- u}-u\dfrac{2-u}{2-u}
=\dfrac{4u-3-2u+u^2}{2-u}
=\dfrac{u^2- 2u-3}{2-u}$
check point
 
$\displaystyle\dfrac{u^2- 2u-3}{2-u}=-\dfrac{(u-2)(u+1)}{u-2} =1¬u$
 
Last edited:
karush said:
$\displaystyle\dfrac{u^2- 2u-3}{2-u}=-\dfrac{(u-2)(u+1)}{u-2} =1¬u$

$\displaystyle\dfrac{u^2 {\color{red}+} 2u-3}{2-u}=-\dfrac{(u {\color{red}+3})(u {\color{red}-1})}{u-2}$
 
2020_05_17_12.51.52~2.jpg

this is the book answe... but steps to get there??
 
karush said:
$x\dfrac{du}{dx}+ u= \dfrac{4u- 3}{2- u}$
so
$x\frac{du}{dx}
=\dfrac{4u- 3}{2- u}-u\dfrac{2-u}{2-u}
=\dfrac{4u-3-2u+u^2}{2-u}
=\dfrac{u^2- 2u-3}{2-u}$
check point

how did you get +2u
 
  • #10
karush said:
$x\dfrac{du}{dx}+ u= \dfrac{4u- 3}{2- u}$
so
$x\frac{du}{dx}
=\dfrac{4u- 3}{2- u}-u\dfrac{2-u}{2-u}
=\dfrac{{\color{red}4u}-3 {\color{red}-2u}+u^2}{2-u}
=\dfrac{u^2- 2u-3}{2-u}$
check point
karush said:
how did you get +2u

$\color{red}4u - 2u = +2u$
 
  • #11
OK. I recant... then
$\dfrac{x}{dx} =\dfrac{u^2+2u-3}{2- u} \dfrac{1}{du} $.
or.
$\dfrac{1}{x} dx=\dfrac{2-u}{x^2 +2u-3} du$
 
Last edited:
  • #12
$\dfrac{2-u}{(u+3)(u-1)} \, du = \dfrac{dx}{x}$

what next?
 
  • #13
integrate both sides
but what is the advantage of the factored denominator?
2020_05_17_15.07.34~2.jpg

RHS
 
Last edited:
  • #14
karush said:
integrate both sides
but what is the advantage of the factored denominator?
https://www.physicsforums.com/attachments/10197
wow

method of partial fractions

$\dfrac{2-u}{(u+3)(u-1)} \, du = \dfrac{dx}{x}$

$\dfrac{2-u}{(u+3)(u-1)} = \dfrac{A}{u+3} + \dfrac{B}{u-1}$

$2-u = A(u-1) + B(u+3)$

$u = 1 \implies B = \dfrac{1}{4}$, $u = -3 \implies A = -\dfrac{5}{4}$

$\dfrac{1}{u-1} - \dfrac{5}{u+3} \, du = \dfrac{4}{x} \, dx$

$\ln\left|\dfrac{u-1}{(u+3)^5}\right| = 4\ln|cx|$

$\left| \dfrac{\frac{y}{x} - 1}{\left(\frac{y}{x}+3\right)^5} \right| = cx^4$

$\left|\frac{y}{x} - 1\right| = cx^4\left|\frac{y}{x} +3\right|^5$

$x \left|\frac{y}{x} - 1\right| = cx^5\left|\frac{y}{x} +3 \right|^5$

$\left| y-x \right| = c\left|y +3x \right|^5$
 
  • #15
OMG...
OK I see how this works just kinda blind first time through
 
Last edited:
  • #16
again thank you so much.
this the last problem on this section. the next one is all. word problems which I hesitate to pursue without more practice
 
  • #17
Isn't "practice" the purpose of the problems?
 
  • #18
depends which side of 18 you are on
 

Similar threads

Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K