B-field from a current in a wire above a conducting surface

Click For Summary
The discussion centers on understanding the magnetic field generated by an infinite current wire positioned above a neutral, conducting surface. The initial thought was to apply imaging techniques, typically used in electrostatics, to analyze the magnetic field behavior. It is noted that adding a current in the opposite direction does not lead to cancellation of fields at the surface. The key equation for the magnetic field around a wire is provided, emphasizing the circumferential nature of the field. The conclusion suggests that imaging techniques can be effectively utilized for this scenario.
Sidsid
Messages
16
Reaction score
2
Homework Statement
What is qualitatively the difference between the magnetic field of an infinite current wire and one with the addition of an infinite , neutral, conducting surface under it. Find it for points between them,under the surface, and above the wire. The magnetic field is 0 at the conductor.
Relevant Equations
B= (mu_0* I)/(2pi r) (circumferential)
I first thought of imaging techniques, because the setup reminded me of it, but i have only ever seen those of electrostatics. If i for example add a current in the opposite direction and with the opposite heigth of the surface the fields dont cancel out at the surface, i think. What is the best approach?
 
Physics news on Phys.org
Sidsid said:
Homework Statement: What is qualitatively the difference between the magnetic field of an infinite current wire and one with the addition of an infinite , neutral, conducting surface under it. Find it for points between them,under the surface, and above the wire. The magnetic field is 0 at the conductor.
Relevant Equations: B= (mu_0* I)/(2pi r) (circumferential)

I first thought of imaging techniques, because the setup reminded me of it, but i have only ever seen those of electrostatics. If i for example add a current in the opposite direction and with the opposite height of the surface the fields don't cancel out at the surface, i think. What is the best approach?
Yes. Use imaging techniques.
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

Replies
4
Views
1K
Replies
23
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
21
Views
2K
  • · Replies 9 ·
Replies
9
Views
10K
  • · Replies 0 ·
Replies
0
Views
984
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K