- #1
UsableThought
- 381
- 250
(This is about pop science books, not textbooks; moderators, please feel free to move if appropriate..
I'm new to the forums & new to studying physics in late middle age - here is http://[URL="https://www.physicsfor...sics-fan-hope-to-overcome-math-block.896768/"']my intro thread[/URL] - and I am getting geared up for self-study at more or less a high school level. My basic text will be one of Ben Crowell's books - i.e. Light and Energy or else Simple Nature. But I will read other books if I think they might be conceptually helpful. About a week ago I came across https://www.amazon.com/dp/0198609418/?tag=pfamazon01-20, by the chem prof/author Peter Atkins; it looked like it might be useful to start nudging Newtonian concepts of work & energy into my head, in advance of the mathematical models for same. Yesterday I started reading it; and I find I am so disgusted at the presentation that I will likely return the book for a refund.
Here's an example. Atkins has just done a brief run-through of "energy as the capacity to do work," using a simplified example of pushing or raising a metal block. Pretty much no math. So far so good; but then he says the following:
What do I object to? Well, first of all, for my money (and I admit I'm a novice, but even so) he's mangled the intended simplification of "electrical energy"; his definition better suits a state of neutral charge than it does a state of separated charges, let alone charge in motion. Worse to me is how he mangles the attempt to widen potential & kinetic energy conceptually; he doesn't even mention that his example was related to gravity, and perhaps that's where the difficulty begins. He seems to unintentionally imply that EM is somehow subordinate to gravity - or something like that; it's impossible to really know what he means.
Far better for clarity of relationships is this from the HyperPhysics site -
- or for that matter this simple navigational graphic, also from HyperPhysics:
Anyway I find myself unwilling to continue in a book where the other subjects to be covered will be material I'm completely unfamiliar with (DNA, entropy, symmetry, etc.). I just don't trust this fellow. It's not that I think that he himself is ignorant; it's that I don't trust him as a guide for the ignorant.
Which seems to show that simplification for laypersons is an awfully tricky business. I have always enjoyed the short video available on YouTube in which a mostly patient but slightly irked Feynman is trying to explain to an interviewer why rubber bands aren't a good metaphor for magnetic attraction or repulsion; and I also have enjoyed his diatribe on the textbook industry & how textbooks for children quickly mangle even the simplest ideas.
I'm trying to think of who the really good science writers are for laypersons. I could name some for psychology, anthropology, etc.; but how about physics? I haven't read as widely there. Carl Sagan to me was more about culture (e.g. https://www.amazon.com/dp/0345409469/?tag=pfamazon01-20, which I loved.) I am currently leafing through https://www.amazon.com/dp/0156006561/?tag=pfamazon01-20, by K.C. Cole, but am not sure it's my cup of tea. I did enjoy a good deal https://www.amazon.com/dp/0062346660/?tag=pfamazon01-20, by Steven Weinberg; that's more the sort of book I like.
Anyone have any recommendations? I'm especially interested in classical mechanics at the moment, maybe starting with Galileo.
I'm new to the forums & new to studying physics in late middle age - here is http://[URL="https://www.physicsfor...sics-fan-hope-to-overcome-math-block.896768/"']my intro thread[/URL] - and I am getting geared up for self-study at more or less a high school level. My basic text will be one of Ben Crowell's books - i.e. Light and Energy or else Simple Nature. But I will read other books if I think they might be conceptually helpful. About a week ago I came across https://www.amazon.com/dp/0198609418/?tag=pfamazon01-20, by the chem prof/author Peter Atkins; it looked like it might be useful to start nudging Newtonian concepts of work & energy into my head, in advance of the mathematical models for same. Yesterday I started reading it; and I find I am so disgusted at the presentation that I will likely return the book for a refund.
Here's an example. Atkins has just done a brief run-through of "energy as the capacity to do work," using a simplified example of pushing or raising a metal block. Pretty much no math. So far so good; but then he says the following:
At this stage, we see that there are just two forms of energy - kinetic energy (the capacity to do work by virtue of motion) and potential energy (the capacity to do work by virtue of position). Although you will often encounter terms such as 'electrical energy,' 'chemical energy,' and 'nuclear energy,' there is really no such thing: these terms are just handy shorthand terms for special and particular combinations of kinetic and potential energy. Electrical energy is essentially the potential energy of negatively charged electrons in the presence of positive charges. Chemical energy [yadda yadda, snipped here]
What do I object to? Well, first of all, for my money (and I admit I'm a novice, but even so) he's mangled the intended simplification of "electrical energy"; his definition better suits a state of neutral charge than it does a state of separated charges, let alone charge in motion. Worse to me is how he mangles the attempt to widen potential & kinetic energy conceptually; he doesn't even mention that his example was related to gravity, and perhaps that's where the difficulty begins. He seems to unintentionally imply that EM is somehow subordinate to gravity - or something like that; it's impossible to really know what he means.
Far better for clarity of relationships is this from the HyperPhysics site -
Potential energy is energy which results from position or configuration. An object may have the capacity for doing work as a result of its position in a gravitational field (gravitational potential energy), an electric field (electric potential energy), or a magnetic field (magnetic potential energy). It may have elastic potential energy as a result of a stretched spring or other elastic deformation.
- or for that matter this simple navigational graphic, also from HyperPhysics:
Anyway I find myself unwilling to continue in a book where the other subjects to be covered will be material I'm completely unfamiliar with (DNA, entropy, symmetry, etc.). I just don't trust this fellow. It's not that I think that he himself is ignorant; it's that I don't trust him as a guide for the ignorant.
Which seems to show that simplification for laypersons is an awfully tricky business. I have always enjoyed the short video available on YouTube in which a mostly patient but slightly irked Feynman is trying to explain to an interviewer why rubber bands aren't a good metaphor for magnetic attraction or repulsion; and I also have enjoyed his diatribe on the textbook industry & how textbooks for children quickly mangle even the simplest ideas.
I'm trying to think of who the really good science writers are for laypersons. I could name some for psychology, anthropology, etc.; but how about physics? I haven't read as widely there. Carl Sagan to me was more about culture (e.g. https://www.amazon.com/dp/0345409469/?tag=pfamazon01-20, which I loved.) I am currently leafing through https://www.amazon.com/dp/0156006561/?tag=pfamazon01-20, by K.C. Cole, but am not sure it's my cup of tea. I did enjoy a good deal https://www.amazon.com/dp/0062346660/?tag=pfamazon01-20, by Steven Weinberg; that's more the sort of book I like.
Anyone have any recommendations? I'm especially interested in classical mechanics at the moment, maybe starting with Galileo.
Last edited by a moderator: